$$U(t, x, y): R_{+} \times \Omega \rightarrow R$$

$$U_{tt} - a^2 \Delta U = 0$$
 $U|_{\partial\Omega} = 0$

Let u(t,x,y)=T(t)u(x,y)

$$\begin{cases} -\Delta u = \lambda u \\ u \big|_{\partial\Omega} = 0 \end{cases}$$

The Dirichlet problem usually can not be explicitly solved •

However, for certain geometries — for example, for a rectangle or for a disk — that could be done by using once again the separation of variables \circ

Let $R_{a,b} = (0, a) \times (0, b)$ be a rectangle with sides a and b. Show that

$$\lambda_{k,m}^{D} = \pi^2 \left(\frac{k^2}{a^2} + \frac{m^2}{b^2} \right), \quad k, m = 1, 2, \dots,$$
 (1.1.11)

are the eigenvalues of the Dirichlet problem (I.I.9)–(I.I.10) on $R_{a,b}$, and the corresponding eigenfunctions are given by

$$u_{k,m}^{\rm D}(x,y) = \sin\frac{k\pi}{a}x\sin\frac{m\pi}{h}y.$$
 (1.1.12)

Prove that these functions form an orthogonal basis in $L^2(R_{a,b})$.

§ Problem for a disk [PDE701Harmonic]

 $-\Delta u = \lambda u$ subject to the Dirichlet condition $u|_{\partial\Omega} = 0$ or Neumann condition

$$\frac{\partial u}{\partial r}\big|_{r=1} = 0$$

Switch to polar coordinates (r, φ)

 $\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2}$ for the Laplacian in planar polar coordinates, and looking the

solutions in the form $u(r, \varphi) = \sum_{n=-\infty}^{\infty} u_n(r)e^{in\varphi}$

Solution Summary:

1. Dirichlet problem

 $\lambda_{m,n} = (j_{m,n})^2$, where $j_{m,n}$ is the *n*-th positive zero of the Bessel function $J_m(x)$ for m=0,1,2,3,... and n=1,2,...

Eigenfunctions:

• For
$$m=0$$
: $u_{0,n}(r,\theta)=J_0(j_{0,n}r)$

For
$$m \geq 1$$
:

$$u_{m,n}^{(1)}(r, heta)=J_m(j_{m,n}r)\cos(m heta)$$

$$u_{m,n}^{(2)}(r,\theta) = J_m(j_{m,n}r)\sin(m\theta).$$

Each eigenvalue $\lambda_{m,n}^{(D)}$ has multiplicity 1 if m=0 and multiplicity 2 if $m\geq 1$.

2. Neumann problem

• Eigenvalues:

$$\lambda_{0,0}^{(N)}=0$$
 (multiplicity 1),

$$oldsymbol{\lambda}_{0,n}^{(N)}=(j_{1,n})^2$$
 for $n=1,2,3,\ldots$,

$$ullet$$
 $\lambda_{m,n}^{(N)}=(j_{m,n}')^2$ for $m=1,2,\ldots$ and $n=1,2,3,\ldots$

Here, $j_{1,n}$ is the n-th positive zero of $J_1(x)$, and $j'_{m,n}$ is the n-th positive zero of $\frac{d}{dx}J_m(x)$

Eigenfunctions:

• For
$$\lambda = 0$$
: $u_{0,0}(r,\theta) = 1$ (constant function),

$$\blacksquare$$
 For $m=0, n\geq 1$: $u_{0,n}(r,\theta)=J_0(j_{1,n}r)$,

For
$$m \geq 1, n \geq 1$$
:

$$u_{m,n}^{(1)}(r, heta)=J_m(j_{m,n}'r)\cos(m heta),$$

$$u_{m,n}^{(2)}(r,\theta) = J_m(j'_{m,n}r)\sin(m\theta).$$

Eigenvalues $\lambda_{0,n}^{(N)}$ $(n\geq 1)$ have multiplicity 1, and $\lambda_{m,n}^{(N)}$ $(m\geq 1)$ have multiplicity 2.

Let us describe the eigenvalues and eigenfunctions of the Dirichlet and Neumann problems in the unit disk \mathbb{D} . Switching to polar coordinates (r, φ) , using the standard expression

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2}$$

for the Laplacian in planar polar coordinates, and looking for solutions of (1.1.9) in the form

$$u(r,\varphi) = \sum_{m=-\infty}^{+\infty} u_m(r) e^{im\varphi},$$

we arrive at the equations

$$u_m''(r) + \frac{1}{r}u_m'(r) + \left(\lambda - \frac{m^2}{r^2}\right)u_m(r) = 0$$
 (1.1.15)

for unknown functions u_m .

The equations (I.I.15) are closely related to the Bessel equation

$$y''(r) + \frac{1}{r}y'(r) + \left(1 - \frac{m^2}{r^2}\right)y(r) = 0.$$
 (1.1.16)

This solution fully characterizes the eigenvalues and eigenfunctions for both boundary conditions in the unit disk °

The eigenfunctions form orthogonal bases for L^2 spaces over the disk under respective boundary conditions •

The Bessel differential equation:

$$x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - v^{2}) y = 0$$

General solution is $y(x) = c_1 J_{\nu}(x) + c_2 Y_{\nu}(x)$

The modified Bessel differential equation:

$$x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} - (x^{2} + v^{2}) y = 0$$

$$y(x) = c_1 I_{\nu}(x) + c_2 K_{\nu}(x)$$

$$I_{\nu}(x) = \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(\nu+k+1)} \left(\frac{x}{2}\right)^{\nu+2k} \qquad K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - Ix(x)}{\sin \nu x}$$

$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - Ix(x)}{\sin \nu x}$$