
§ Sn 上的 Laplace 算子 

§ 01 圓周 1S 上的 Laplace 算子 

幾何背景：一維環面即圓周 1S ，視為區間[0,2 ] 的端點黏合（週期邊界）。  

Laplace 算子：為
2

2

d

dx
    with colsed manifold condition  

(意思是說封閉流形條件：即週期性邊界條件： (0) (2 ), '(0) '(2 )u u u u     

函數空間： 

定義在 1S 上的平方可積函數(即 2 1( )L S )，滿足週期性 ( 2 ) ( )f x f x   

 

特徵值問題：
2

2
, ( 2 ) ( ), 0

d u
u u x u x

dx
        

設 ( ) kxu x e 則特徵方程式為 2 0k k i       

一般解 ( ) , ,i x i xu x Ae Be A B C     (後面假設 k   ) 

由 (0) (2 ) ikL ikLu u A B Ae Be       

由 '(0) '(2 ) ( ) ( )ikL ikLu u ik A B ik Ae Be       

… 

(1 ) 0, (1 ) 0ikL ikLA e B e      

對於非平凡解 k=n for some n Z   

對應的特徵值為 2 2k n     

後面 k=0，即 0  的情形 暫時省略。 

 

0 0  ，特徵函數：{1} 

2

n n  ，特徵函數：{cos( ),sin( )}nx nx  (與 ine  等價，構成 2 1( )L S 的一組完備正交

基。  

( ) ikx ukxu x Ae Be    

任何 2L 函數都可以展開為這些特徵函數的 Fourier 級數： ( ) in

n

n

u u e 




   

譜的完整描述： 

Laplace 算子的譜是離散的，譜 2 2 2 2( ) {0,1 ,2 ,..., ,...} {0,1,4,9,..., ,...}n n     



特徵值 2

n n  的重數(multiplicity)： 

0 0   ：重數 1(常數函數) 2 ( 1)n n n   ：重數 2 (cos(nx)與 sin(nx)線性獨立) 

註 

一維環面有幾種說法： 

1. 1 2 2{( , ) 1}S x y x y    

2. [0,1]的線段，把 0 與 1 黏在一起。 

3. 1 { 1}T z C z   是一個 Lie group 

4. R/Z   

 

§ 在 1S 上一維的分佈 

許多物理與數學中重要的函數不是光滑函數(例如 點源、脈衝、Green 函數)，

甚至不是經典意義上的函數(例如 Dirac 函數)。 

它們在經典 2L 或光滑函數空間無法被描述為微分方程的解。 

因此引入分佈(廣義函數)以解決上述的侷限性。 

2
2

2

d y
n y

dx
  則 ( ) cos siny x a nx b nx   

當限制在單位圓 1S 上，算子
2

2

d

d
   ，可知特徵方程 u u  的解

(eigenfunction)為 ( ) in

nu e   ，特徵值(eigenvalues)為 2

n n  。 

現在黎曼流形是 1S  

1S 上的測試函數集為 1( )D S ：{smooth functions with compact support on 1S } 

例如 2

1
exp( , 1

1 ( )( )

0,other

 
  


  

  



1( )D S  

1'( )D S :{作用在 test function 例如 ( )  上的連續線性泛函。} 

例如 Dirac 函數 0 , (0)     for any 1( )D S ， 1

0 '( )D S  稱為 0 分佈。 

u u  的 smooth solutions 為例如 2 1( )ine L S   



用 Fourier 的模式： 2( ) ,in in

n n

n Z n Z

u u e u n u e 
 

 

     。 

 

在經典意義下，偏微分方程的解需要是光滑函數，但實際上，許多重要的解

（如 Green 函數或基本解）是廣義函數（即分佈），因此需要拓展至 distributional 

解的框架中。 

如果我們想解這個方程在更廣義的空間中（例如 Dirac 分佈是否可以當作解），

我們就需要進入 distributional solution（分佈解）的語境。 

Let 
0u  ， 0 0, : , (0)           所以

0 也是一個分佈。 

表現為分佈的解 例如 Dirac 分佈 ( ')( ') in

n Z

e     



   

 

譜分析與分佈理論的結合點是 Dirac 的譜展開。 

分布理論是譜分析在處理更廣泛問題時的自然延伸和必要工具。 

 

§ 物理意義 

這個數學範例對應著一維波動或振動現象，特別是具有週期性邊界條件的系

統。以下是核心的物理對應： 

 

 





 

§ 點源擾動的譜分解：激發所有振動模式 

( ,0) ( ')u        

( ')1
( , ) cos( )

2

in

n

n

u t e t  


  ，角頻率 n cn  是獨立振盪，其中 c 是光速。 

( ')1
( ')

2

in

n

e    







   表示在 ' 處的點源衝擊(就是敲一下)。 

敲擊後觀察系統的穩態響應需解方程 ( , ') ( ')G          

解
( ')

2
0

1
( , ')

2

in

n

e
G C

n

 

 






 


 即 Green 函數，給出在 處測得的穩態位移。 

 

 

 

 



§ Eigenvalues of Laplace-Beltrami operator on 2S  

Using spherical coordinates ( , )  ，the Laplace-Beltrami operator on 2S  is： 

2`

2

2 2

1 1
(sin ) ...( )

sin sinS


    

  
   

  
 

We seek eigenfunctions ( , )Y   ，and eigenvalues   such that 2S
Y Y    

Separation of variables 

設 ( , ) ( ) ( )Y       代入(*)得 
2

2 2

1 1
(sin )

sin sin
 

    

   
    

  
，同除以，再同乘以 2sin    

2
2

2

sin 1
(sin ) sin 0

d d d

d d d


  

  

 
  

 
  

設
2

2

2

1 d
m

d


 


，則 

2
2

2

2 2

0...(1)

sin
(sin )+( sin ) 0...(2)

d
m

d

d d
m

d d




  

 

 
  




   
 

  

(1) 式是方位角方程式，(2)式是極角方程式。 

 

由(1) ( ) ime   ，其中 m 是整數(因為 BC ( 2 )     ) 

(2) 的部分，令 cosx  ， 2sin 1 x   ， 2sin 1
d d d

x
d dx dx



     …(3) 

設 ( ) ( )P x    代入(3) 21
d dP

x
d dx


   ， 2sin (1 )

d dP
x

d dx





     

計算 2 2 2(sin ) ( (1 ) ) 1 ((1 ) )
d d d dP d dP

x x x
d d d dx dx dx


  


        

2 2sin (sin ) (1 ) ((1 ) )
d d d dP

x x
d d dx dx

 
 


     

(2)式變成 2 2 2 2(1 ) ((1 ) ) ( (1 ) ) 0
d dP

x x x m P
dx dx

      同處以 2(1 )x 後展開得 

2 2
2

2 2
(1 ) 2 ( ) 0

1

d P dP m
x x P

dx dx x
    


  

得到 associated Legendre equation： 

2
2

2
((1 ) ) ( ) 0

1

d dP m
x P

dx dx x
   


  

Eigenvalue ( 1)l l   由 associated Legendre equation 解的存在性決定。 

最後得到 eigenfunctions ( , ) (cos ) , ( 1)m m im

l l lY P e l l        



結論： 

在 2S 上的 Laplace-Beltrami operator 有一組完備的 eigenfunction…spherical harmonic 

function ( , )m

lY   ，滿足 2 ( , ) ( 1) ( , )m m

l lS
Y l l Y         

0,1,2,3,.., , 1,..., 1,l m l l l l        

 

後記 

1. 
1

: ( )ij

i jgg
g

    ， 2 3S R ，in spherical coordinates ( , ) 

2 2 2 2sinds d d    ， sing   then 2`

2

2 2

1 1
(sin )

sin sinS


    

  
  

  
 

2. 完整的解為
2 ( )!

( , ) (cos )
4 (1 )!

m m im

l l

l l m
Y P e

m

  


 



 

3. Legendre polynomial： 

 
First few Legendre polynomials： 

2 3 4 2

0 1 2 3 4

1 1 1
( ) 1, ( ) , ( ) (3 1), ( ) (5 3 ), ( ) (35 30 3)

2 2 8
P x P x x P x x P x x x P x x x           

4. 經典物理中，重力與靜電場滿足 0  ，當問題約束在球面上時就變成

2 0
S

   ；例如球面上的熱擴散方程 2S

u
u

t


 


  



5. 陀螺運動方程的 

(1)對稱性 (2)角動量量子化 (3)球面幾何與 Laplace-Beltrami operator 有深層的

關係。 

§ 3S 的譜 

{ ( 2) 0,1,2,...}k k k k     重數 2( 1)k    

3S 上的球面調和函數是 4R  k 次調和多項式在 3S 上的限制。 

第一個非玲特徵值為
1 3  ，重數 4 

/2

/2

( )
( ) ,

(4 ) ( 1)
2

n

n

Vol M
N

n
  





 

 ， 3 2( ) 2Vol S  ，
5 3

( )
2 4


    

譜近似：Weyl 定律給出 3/21
( )

3
N        


