§ The Laplacian on a compact Riemannian maifold

3.1 Basic Riemannian Geometry

A connection on M is a map $D:TM \times \Gamma(M) \to TM$

$$D_X Y := D(X,Y)$$

Lie derivative
$$L_X(\alpha) := \lim_{t \to 0} \frac{\varphi_t^* \alpha - \alpha}{t}$$

Cartan formula $L_X(\alpha) = \iota_X d\alpha + d(\iota_X \alpha)$ for all $\alpha \in \Omega^k(M)$

In particular , for a function f , we get $L_X f = \iota_X df = df(X)$

The Levi-Civita connection is the unique connection on TM such that

- (1) D is torsion free
- (2) D is compatible with the metric g

For a Riemannian manifold (M, g) of dimension n and for a local chart $\phi: U \subset M \to \mathbb{R}^n$ which coordinates are denoted by (x^1, x^2, \dots, x^n) , we denote by $\left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \cdots, \frac{\partial}{\partial x^n}\right)$ the associated vector fields. Then we have the following local expression of the Levi-Civita connection:

$$D_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k},$$

where Γ_{ij}^k denote the *Christoffel symbols*.

The geodesic $\nabla_T T = 0$

The exponential map

Theorem 3.1.19 (Hopf–Rinow Theorem). Let (M, g) be a Riemannian connected manifold. The following conditions are equivalent:

- (i) The manifold (M, g) is complete.
- (ii) There exists $x \in M$ such that the map \exp_x is defined on the whole tangent space T_xM .
- (iii) The map \exp_x is defined on the whole tangent space T_xM for all $x \in M$.
- (iv) Compact sets of M are exactly closed and bounded sets of M.

Moreover, any of these conditions implies that every pair of points $(x, y) \in M^2$ can be joined by a geodesic curve.

From now on, all Riemannian manifolds are supposed to be complete.

The curvature tensor

$$R(X,Y)Z = \nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X Z) - \nabla_{[X,Y]}Z$$

For a fixed point x on the manifold M, the sectional curvature of a 2-plane $P \subset T_xM$ spanned by a basis X_1, X_2 is the number

$$K_x(P) := \frac{g(R(X_1, X_2) X_2, X_1)}{g(X_1 \wedge X_2, X_1 \wedge X_2)} = \frac{R(X_1, X_2, X_1, X_2)}{\|X_1 \wedge X_2\|^2},$$

The Ricci curvature tensor

 $Ric_x(X,X) := \sum_{i=1}^n R(X,e_i,X,e_i)$ for any point $x \in M$ and any vector $X \in T_xM$,

where $\{e_i\}$ is an orthonormal basis of the vector space $T_x M$ \circ

	Ricci curvature	Scalar curvature
R^n	0	0
S^n	(n-1)g	n(n-1)
H^n	-(n-1)g	-n(n-1)

§ divergence operator

$$div(X) := tr(Y \to \nabla_{Y} X)$$

For a local chart $\phi: U \subset M \to R^n$ of M and for a vector field $X = \sum_j X^j \frac{\partial}{\partial x^j}$

$$div(X) = \frac{1}{\sqrt{g}} \sum_{i=1}^{n} \frac{\partial (\sqrt{g} X^{j})}{\partial x^{j}}$$