§ The Laplacian on a compact Riemannian manifold
§ 3.1 Basic Riemannian Geometry

A connectionon Misamap D:TM xI'(M) ->TM
D,Y :=D(X,Y)

‘a—a
Lie derivative L, ()= Itmggotf

Cartan formula L, (@) =1,da+d(i,@) forall aeQ“(M)

In particular > for a function f » we get L, f =¢,df =df (X)

The Levi-Civita connection 1s the unique connection on TM such that
(1) D is torsion free

(2) D 1s compatible with the metric g

For a Riemannian manifold (M, g) of dimension n and for alocal chart¢p: U C
M — R" which coordinates are denoted by (r x2,. ,x”), we denote by

(ail iz ey 3,;) the associated vector fields. Then we have the following
x1’ Jx dx

local expression of the Levi-Civita connection:

m 8{}, Z i 8xk

where Ff;. denote the Christoffel symbols.

The geodesic VT =0

The exponential map

Theorem 3.1.19 (Hopf-Rinow Theorem). Let (M, g) be a Riemannian connected
manifold. The following conditions are equivalent:

(1) The manifold (M, g) is complete.

(1) There exists x € M such that the map exp, is defined on the whole tangent
space Ty M.

(iii) The map exp, is defined on the whole tangent space Ty M for all x € M.
(iv) Compact sets of M are exactly closed and bounded sets of M.

Moreover, any of these conditions implies that every pair of points (x,y) € M?
can be joined by a geodesic curve.

From now on, all Riemannian manifolds are supposed to be complete.

The curvature tensor

R(X ,Y)Z = vx (VYZ) _VY (sz)_v[x,v]z



For a fixed point x on the manifold M, the sectional curvature of a 2-plane P C
Tx M spanned by a basis X, X» is the number

g(R (X1, X)Xz, X1)  R(Xy, X, Xy, X>)

Ky (P):= o 2
g (X1 A Xz, X1 A X)) [ X1 A Xz

The Ricci curvature tensor

Ric, (X, X)=>"R(X,e,X,e) forany point XeM and any vector X €T, M -

i=1
where {&} is an orthonormal basis of the vector space T,M -

Ricci curvature Scalar curvature
R" 0 0
S" (n-1)g n(n-1)
H" -(n-Dg -n(n-1)

Now, let us introduce the divergence operator. Let X be a C! vector field on M.
The divergence of X is given by

div(X) :=tr (Y = Dy X).
For a local chart p: U C M — R"™ of M and for a vector field

- d
X =) X/ —,
; ax/

we have

, 1 —9(/2X7)
d1v(X)=ﬁ§ "

§ 3.2 Analysis on manifolds

3.2.1 Distributions on a Riemannian manifold

D(M)  the set of smooth functions with compact suport on M > called the set of test
functions °

A distribution on M is a linear form T:D(M) >R » ¢ > Te

Example 3.2.3. Let a be a point M. The Dirac distribution §, is defined by: for
allp € D(M),
(8a- ©)pr(ayxpary = ¢(a).



Example 3.2.4. A locally integrable function f on M defines a distribution,
called the regular distribution associated to f', by: for all ¢ € D(M)

(Tr: ) anyemnny = [M fodVy.

For adistribution T € D’(M ) and for alocal coordinate system (x!, x2,--- | x™)
we define the partial derivative ;’% of T by: forall ¢ € D(M)

(7o) (r35)
— ¢ =T, — .
X [ iy X" [ pranyxp(M)

3.2.2 Sobolev spaces on a Riemannian manifold

Lebesgue space (M, g) :={f :M — R measurable such that J.|f|2dvg < oo}
M

Soboev space H'(M,g):=C*(M) > andH,(M,g) :=D(M)

3.2.3 The Laplacian operator and the Green formula
The Laplace-Beltrami( simply Laplacian)

A, () :=div(Vf)
Theorem 3.2.9 (Green’s formula aka. Integration by parts formula). Let (M, g)
be an oriented Riemannian manifold and 2 a subset of M with a smooth boundary

OM. Denote by v the unit normal vector field to the boundary oM. For any

¢ € C>(M) and € CY (M), at least one of which has a compact support, we
have:

fmgm =f (g (0.Vo) ¥ — g (v, V9) ) dAg+[ oAV dVy.
M aM M

Exercise

"(n=1)! n+l
Verify that Vol (2", can) = (=D i vol(s? can) = 27
(2n-1)! n!



