§ The Laplacian on a compact Riemannian manifold

§ 3.1 Basic Riemannian Geometry

A connection on M is a map $D:TM \times \Gamma(M) \to TM$

$$D_X Y := D(X,Y)$$

Lie derivative
$$L_X(\alpha) := \lim_{t \to 0} \frac{\varphi_t^* \alpha - \alpha}{t}$$

Cartan formula $L_X(\alpha) = \iota_X d\alpha + d(\iota_X \alpha)$ for all $\alpha \in \Omega^k(M)$

In particular, for a function f, we get $L_X f = \iota_X df = df(X)$

The Levi-Civita connection is the unique connection on TM such that

- (1) D is torsion free
- (2) D is compatible with the metric g

For a Riemannian manifold (M, g) of dimension n and for a local chart $\phi: U \subset M \to \mathbb{R}^n$ which coordinates are denoted by (x^1, x^2, \dots, x^n) , we denote by $\left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \dots, \frac{\partial}{\partial x^n}\right)$ the associated vector fields. Then we have the following local expression of the Levi-Civita connection:

$$D_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k},$$

where Γ_{ij}^k denote the *Christoffel symbols*.

The geodesic $\nabla_T T = 0$

The exponential map

Theorem 3.1.19 (Hopf–Rinow Theorem). Let (M, g) be a Riemannian connected manifold. The following conditions are equivalent:

- (i) The manifold (M, g) is complete.
- (ii) There exists $x \in M$ such that the map \exp_x is defined on the whole tangent space T_xM .
- (iii) The map \exp_x is defined on the whole tangent space $T_x M$ for all $x \in M$.
- (iv) Compact sets of M are exactly closed and bounded sets of M.

Moreover, any of these conditions implies that every pair of points $(x, y) \in M^2$ can be joined by a geodesic curve.

From now on, all Riemannian manifolds are supposed to be complete.

The curvature tensor

$$R(X,Y)Z = \nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X Z) - \nabla_{[X,Y]}Z$$

For a fixed point x on the manifold M, the sectional curvature of a 2-plane $P \subset T_x M$ spanned by a basis X_1, X_2 is the number

$$K_{x}(P) := \frac{g\left(R\left(X_{1}, X_{2}\right) X_{2}, X_{1}\right)}{g\left(X_{1} \wedge X_{2}, X_{1} \wedge X_{2}\right)} = \frac{R(X_{1}, X_{2}, X_{1}, X_{2})}{\left\|X_{1} \wedge X_{2}\right\|^{2}},$$

The Ricci curvature tensor

 $Ric_x(X,X) := \sum_{i=1}^n R(X,e_i,X,e_i)$ for any point $x \in M$ and any vector $X \in T_xM$,

where $\{e_i\}$ is an orthonormal basis of the vector space $T_x M$ \circ

	Ricci curvature	Scalar curvature
R^n	0	0
S^n	(n-1)g	n(n-1)
H^n	-(n-1)g	-n(n-1)

Now, let us introduce the divergence operator. Let X be a \mathcal{C}^1 vector field on M. The *divergence* of X is given by

$$\operatorname{div}(X) := \operatorname{tr}(Y \mapsto D_Y X)$$
.

For a local chart $\phi: U \subset M \to \mathbb{R}^n$ of M and for a vector field

$$X = \sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}},$$

we have

$$\operatorname{div}(X) = \frac{1}{\sqrt{g}} \sum_{i=1}^{n} \frac{\partial \left(\sqrt{g} X^{j}\right)}{\partial x^{j}}.$$

§ 3.2 Analysis on manifolds

3.2.1 Distributions on a Riemannian manifold

D(M) : the set of smooth functions with compact suport on M ' called the set of test functions \circ

A distribution on M is a linear form $T:D(M) \to R$, $\varphi \to T\varphi$

Example 3.2.3. Let a be a point M. The *Dirac distribution* δ_a is defined by: for all $\varphi \in \mathcal{D}(M)$,

$$\langle \delta_a, \varphi \rangle_{\mathcal{D}'(M) \times \mathcal{D}(M)} := \varphi(a).$$

Example 3.2.4. A locally integrable function f on M defines a distribution, called the *regular distribution* associated to f, by: for all $\varphi \in \mathcal{D}(M)$

$$\langle T_f, \varphi \rangle_{\mathcal{D}'(M) \times \mathcal{D}(M)} := \int_M f \varphi \, d\mathcal{V}_g.$$

For a distribution $T \in \mathcal{D}'(M)$ and for a local coordinate system (x^1, x^2, \cdots, x^n) we define the partial derivative $\frac{\partial T}{\partial x^i}$ of T by: for all $\varphi \in \mathcal{D}(M)$

$$\left\langle \frac{\partial T}{\partial x^i}, \varphi \right\rangle_{\mathcal{D}'(M) \times \mathcal{D}(M)} := -\left\langle T, \frac{\partial \varphi}{\partial x^i} \right\rangle_{\mathcal{D}'(M) \times \mathcal{D}(M)}.$$

3.2.2 Sobolev spaces on a Riemannian manifold

Lebesgue space $L^2(\mathbf{M},g) := \{f : M \to R \text{ measurable such that } \int_M \left| f \right|^2 dV_g < \infty \}$

Soboev space
$$H^1(M,g) := \overline{C^{\infty}(M)}$$
, and $H^1_0(M,g) := \overline{D(M)}$

3.2.3 The Laplacian operator and the Green formula The Laplace-Beltrami(simply Laplacian)

$$\Delta_{\sigma}(f) := \operatorname{div}(\nabla f)$$

Theorem 3.2.9 (Green's formula aka. Integration by parts formula). Let (M, g) be an oriented Riemannian manifold and Ω a subset of M with a smooth boundary ∂M . Denote by v the unit normal vector field to the boundary ∂M . For any $\varphi \in C^2(M)$ and $\psi \in C^1(M)$, at least one of which has a compact support, we have:

$$\int_{M} \psi \Delta_{g} \varphi \, d\mathcal{V}_{g} = \int_{\partial M} \left(g \left(\nu, \nabla \varphi \right) \psi - g \left(\nu, \nabla \psi \right) \varphi \right) \, d\mathcal{A}_{g} + \int_{M} \varphi \Delta_{g} \psi \, d\mathcal{V}_{g}.$$

Exercise

Verify that
$$Vol(S^{2n}, can) = \frac{(4\pi)^n (n-1)!}{(2n-1)!}$$
 and $Vol(S^{2n+1}, can) = \frac{2(\pi^{n+1})!}{n!}$