Prove that the Hermite functions $e_n(x) = (2^n n! \sqrt{\pi})^{-\frac{1}{2}} e^{-\frac{x^2}{2}} H_n(x)$

with $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$ form a Hilbert basis of $L^2(R)$

§ 1 正交性

Hermite 多項是滿足 $\int_{-\infty}^{\infty} H_m(x) H_n(x) e^{-x^2} dx = \sqrt{\pi} 2^n n! \delta_{mn}$

今考慮 $e_n = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} e^{-x^2/2} H_n(x)$ 因此兩 Hermite 函數的內積為

$$\langle e_m, e_n \rangle = \int_{-\infty}^{\infty} e_m(x)e_n(x)dx = \dots = \delta_{mn}$$

§ 完備性(張成空間密度)

To show that the span of $\{e_n\}$ is dense in $L^2(R)$, it suffices to show that if $f \in L^2(R)$

satisfies $\langle f, e_n \rangle = 0$ for all n , then f = 0 almost everyhere \circ

The Hermite functions are of the form $e_n(x)=c_nH_n(x)e^{-x^2/2}$, where $c_n=(2^nn!\sqrt{\pi})^{-1/2}\neq 0$. Thus, the span of $\{e_n\}$ is the same as the span of $\{H_n(x)e^{-x^2/2}\}$. Consider the set $S=\mathrm{span}\{p(x)e^{-x^2/2}\mid p \text{ is a polynomial}\}$, which is identical to the span of the Hermite functions.

Suppose $f\in L^2(\mathbb{R})$ and $\langle f,s
angle=0$ for all $s\in S$, i.e., for all polynomials p,

$$\int_{-\infty}^{\infty}f(x)p(x)e^{-x^2/2}dx=0.$$

Define $k(x)=f(x)e^{-x^2/2}.$ Since $f\in L^2(\mathbb{R})$ and $e^{-x^2/2}$ is bounded (by 1), $k\in L^2(\mathbb{R})$ because

$$\int_{-\infty}^\infty |k(x)|^2 dx = \int_{-\infty}^\infty |f(x)|^2 e^{-x^2} dx \leq \sup_x e^{-x^2} \int_{-\infty}^\infty |f(x)|^2 dx < \infty.$$

The condition becomes

$$\int_{-\infty}^{\infty} k(x)p(x)dx = 0 \quad \text{for all polynomials } p.$$

It must be shown that k=0 almost everywhere. For any continuous compactly supported function ϕ , by the Weierstrass approximation theorem, for any $\epsilon>0$ and any interval [-A,A] containing the support of ϕ , there exists a polynomial q such that

$$\sup_{x\in [-A,A]}|\phi(x)-q(x)|<\epsilon.$$

Then,

$$\left|\int_{-\infty}^{\infty}k(x)\phi(x)dx\right| = \left|\int_{-A}^{A}k(x)\phi(x)dx\right| \leq \left|\int_{-A}^{A}k(x)(\phi(x)-q(x))dx\right| + \left|\int_{-A}^{A}k(x)q(x)dx\right|.$$

The first term satisfies

$$\left|\int_{-A}^A k(x)(\phi(x)-q(x))dx\right| \leq \int_{-A}^A |k(x)||\phi(x)-q(x)|dx \leq \epsilon \int_{-A}^A |k(x)|dx \leq \epsilon \sqrt{2A} \|k\|_{L^2(\mathbb{R})}.$$

The second term satisfies, since $\int_{-\infty}^{\infty} k(x)q(x)dx = 0$,

$$\left| \int_{-A}^A k(x) q(x) dx
ight| = \left| - \int_{|x| > A} k(x) q(x) dx
ight| \leq \|k\|_{L^2(|x| > A)} \|q\|_{L^2(|x| > A)}.$$

As $A \to \infty$, $\|k\|_{L^2(|x|>A)} \to 0$ because $k \in L^2(\mathbb{R})$. For fixed ϵ and A, $\|q\|_{L^2(|x|>A)}$ is bounded on compact sets, but since ϵ is arbitrary and A can be chosen large, the expression can be made arbitrarily small. Thus, for each fixed ϕ ,

$$\left| \int_{-\infty}^{\infty} k(x) \phi(x) dx
ight| \leq \epsilon \sqrt{2A} \|k\|_{L^2(\mathbb{R})} + \|k\|_{L^2(|x|>A)} \|q\|_{L^2(|x|>A)},$$

and taking $\epsilon o 0$ and $A o \infty$ shows that

$$\int_{-\infty}^{\infty} k(x)\phi(x)dx = 0$$

for all continuous compactly supported ϕ . Since such functions are dense in $L^2(\mathbb{R})$, it follows that k=0 almost everywhere.

Therefore, $k(x)=f(x)e^{-x^2/2}=0$ almost everywhere, so f=0 almost everywhere (since $e^{-x^2/2}\neq 0$). This implies that the only function orthogonal to all elements of S is zero, so S is dense in $L^2(\mathbb{R})$. Hence, the span of the Hermite functions is dense.