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5. T?=R*/(2xZ)* 4R (x,y) €(0,27) ECffi g =dx’ +dy’

9:T> >R o(x,y)=(cosx,sinx,cos y,sin y)
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B4 T2HY metric g=dx’+dy’ : R*fY metric h=du} +du? +du? + du?

BB @'h=g (pullback)

du, =—sin xdx, du, = cos xdx, du, =—sin ydy, du, = cos ydy

@'h =g (du? +...+ du?) = (¢"du,) +...+ (¢"du, )’

@"du, =d(¢’u,) = d(cos x) = —sin xdx

@"h = cos® xdx® +sin’ xdx® +cos® ydy? +sin® ydy” = dx* +dy* =g
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# M < N H inclusion map t&— embedding & M & N Y submanifold °

f:M —>N F5(df), /2 surjective RIfE p e M £y regular point(Z3 HIIFE &y critical

point)
# f7(q) 2 regular point Al q e N A regular value °

Let f:M — N be a differential embedding > f(M) is called a differentiable
submanifod of N ©

Let ge N bearegular value of f:M — N and assume that the level set

L:=f"(a)={peM|f(p)=q} isnonempty ° Then L is a submanifold of M and

T L=ker(df), cT,M forall pel



#5HH S"J2 R™ Y n-dim submanifold H.T,S" ={veR"™|<x,v>=0}

. LetM » N be two smooth manifolds and f:M — N be an immersion ° Suppose
that dim(M)=dim(N) - prove that f is a local diffeomorphism °

Since f 1s an immersion ° its differential dfp :T,M =T, )N isnjective for every

peM - Given dim(M)=dim(N) - the tangent spaces T,M and T, N have

equal dimensions ° A linear injective map between vector spaces of same dimension 1s

necessarily surjective * hence df is an isomorphism °
By the inverse function theorem for manifolds » if df is an isomorphism at p

there exist neighborhoods U M ofpand V < N of f(p) such that f |U:U -V

18 a diffeomorphism °
Since this hold for every peM > fis alocla diffeomorphism °

f:R—R? f(t)=(e'cost,e'sint) && embedding °
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