The Implicit function theorem
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IFT on Manifolds : If ¢:M —R" surjective differential at p > then

T=¢"0)={peM|p(p)=0} isasmooth submanifold near p °



Example -

Let M=R® with Euclidean metric > and define : @(X,y,2) =Xx*+y*+2° -1 o
The level set £ =¢(0) is the unit sphere S° °
1. The differential D¢ at point (x,y,2) is D@, =(2X,2y,22) is surjective iff

(X,¥,2)#(0,0,0) - Since T excludes the origin > ¢ has rank 1 and thus S* isa

smooth embedded submanifold °
2. Local parameterization via IFT -

Near p=(0,0,1) * we can solve z as function of (x,y) : Z =/1—x*—y?
N . : o0¢
The IFT guarantees this valid in a neighborhood of (0,0,1) » since 5‘(0’0’1): 2#0

§ Consider the orthogonal group : O(n) ={AeGL(n;R): AA' =1}

Show that O(n) is a dfferentiable manifold > and determine its dimension ©
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Orthogonal group TFEAZEf @ O(n) has two connected components ©

The one that contains the 1dentity element 1s a normal subgroup > called the special
orthogonal group * and denotes SO(n) ° It also called the rotation group °
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2. ker(df), ={BeT,M|(df),B=0}
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§ Let X:{(x, y,2) e R3‘x3+xyz+y2 =1}

(a) Show that X is a 2-manifold °

(b) Consider the map 7: X — R? taking (x,y,z) to (X,y) °
Find all points of X at which 7z fails to be a local diffeomorphism ©

Consider the function f:R*—>R » f(X,y,2)=X+xyz+y* -1
df = (3x* + yz,xz+ 2y, xy)

Hp=0 » [R5k £7(0) ={(x, ¥, 2)[x* +xyz + y* ~1=0}
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Bigs £1(-1) = {(2,9,2) | 2® +ayz +97 = 0} -
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df (A) = j (Jacobian matrix)
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