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Abstract

Courses in introductory special and general relativity have increasingly be-
come part of the curriculum for upper-level undergraduate physics majors and
master’s degree candidates. One of the topics rarely discussed is symmetry,
particularly in the theory of general relativity. The principal tool for its study
is the Killing vector. We provide an elementary introduction to the concept of
a Killing vector field, its properties, and as an example of its utility apply these
ideas to the rigorous determination of gravitational and cosmological redshifts.
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1 Prologue

In 1907, Albert Einstein enunciated his “equivalence principle” and used it to examine
the influence of the gravitational field on the propagation of light!. He demonstrated,
in approximation that as light moved through a difference in gravitational potential
its frequency would change. It is with the latter that the concept of gravitational
redshift enters the ken of the physicist.

In 1916 Einstein completed his journey to a theory of gravitation: The Foun-
dations of the General Theory of Relativity?. Here, redshift is studied with greater
precision. It is discussed in terms of the metric. In Section 22, Behavior of Rods and
Clocks in the Static Gravitational Field, toward the end of the paper he states; (in
translation) “From this it follows that the spectral lines of light reaching us from the
surface of large stars must appear displaced toward the red end of the spectrum.”

The General Theory of Relativity describes gravitation as the curvature of space-
time. The Einstein equations are a protocol for the determination, subject to hypothe-
ses concerning the physical nature of the spacetime being discussed, of the metric of
the space in question. This metric is the source of all information about the proper-
ties of the space. In particular, of special interest here, it enables the calculation of
the paths of light rays—the null geodesics—and the description of the world lines of
objects in the spacetime.

These ideas were substantially refined and put into the form in use today by
the distinguished mathematician Hermann Weyl. He introduced the concept of world
lines of emitter and observer and the connection of elements of proper time on each
defined by null geodesics propagating from the former to the latter. This, for the first
time, provided a general definition of frequency shift for light in arbitrary spacetimes.
It was first stated in the fifth edition of his book Space-Time-Matter®. In Appendix
ITT “Redshift and Cosmology” he explains:

“The different points on the world line of a point-like light source are
the origin of (three-dimensional) surfaces of constant phase that form
null cones opening towards the future. From the rhythm of the change
of phase on this line one obtains the perceived change of phase for any
observer by checking how his world line intersects the successive surfaces
of constant phase. Let s be the proper time of the light source and s’
the proper time of the observer. To each point s on the world line of
the light source corresponds a point s on the world line of the observer:
s’ = §'(s), the intersection of his world line with the future null cone
emanating from s. If the process occurring at the position of the source is



a purely periodic one of infinitely small period then the change of phase
experienced by the observer is also periodic; but the period is increased
in the ratio 1 + z = ds’/ds (obviously measured along both world lines
in their respective proper times). If the observer carries a light source
of the same physical nature as the observed one then every spectral line
of his light source with frequency f corresponds to the spectral line of
the distant light source with frequency f/(1+ z). The ones appear to be
displaced with respect to the others.”

In the ray approximation, light source and observer are connected by null
geodesics running on surfaces of constant phase of the future light cones. (See Fig. 1).
Null geodesics emitted at proper times s and s + ds will intersect the world line of
the observer at proper times s’ and s’ + ds’ respectively. (See Fig. 2). The redshift is
simply
ds'
T
In order to find this ratio one must know the null geodesics, or more precisely, their
variation. In general this is not simple. The task is greatly simplified if, under a time
translation, the geodesic is not changed or is subjected only to a scale transformation.
These are the conditions, respectively, for the existence of either a Killing vector or
a conformal Killing vector in the spacetime manifold. This is the central point of our
investigation.

1+2= (1.1)

2 Introduction

The concept of symmetry is central to the solution of many problems in physics.
Introduction of ignorable coordinates in the construction of kernel functions for La-
grangians entails implicit use of a prior: knowledge of the symmetries of the system
being studied. Construction of the Hamiltonian for a problem in quantum mechanics
is constrained by the symmetries thereof. It is the measure of the power of symmetry
considerations that solely through their application, the Robertson-Walker metric can
be constructed. In this paper we study redshift and, as we shall show, the symmetries
of the spacetime determine the manner in which redshifts occur.

Spacetime is a 4-dimensional Riemannian manifold, that is, it is a surface. The
symmetries of a surface are numerous: among these there are discrete symmetries
such as inversion in a point or reflections in a plane and there are the infinitesimal
continuous coordinate transformations (also called mappings or motions) which leave



the metric unchanged. Such mappings are called “isometries”. It is the latter which
will occupy our attention.

A significant, yet obvious example is furnished by the isometries of the metric
of special relativity. Its “flatness” enables their simple enumeration: 3 spatial trans-
lations, 3 rotations, 3 pure Lorentz transformations, and the translations along the
time axis. This last is worth noting. In a 4-dimensional space, time is the same as any
other coordinate. If a metric is invariant under translations in the x-direction this
is no different in principle than saying that a metric is invariant under translations
along the t-axis. The latter implies that the metric is stationary. Conversely, if a
metric is stationary it possesses a time symmetry.

Other well-known examples are the sphere which has the symmetry of the well-
known three-dimensional rotation group, Osz. In the curved spacetime of general
relativity things are rarely that obvious. The continuous symmetries are those of
interest here.

The principal tool for investigating the isometries of a metric is the Killing
vector field*® which was introduced by the late 19th century German mathematician
Wilhelm Killing, its distinguished eponym. It was developed and exploited in the
study of continuous groups. The set of Killing vectors for a given metric provides an
invariant characterization of these properties. No matter the coordinate system in
which the metric is cast, its set of Killing vectors (modulo coordinate transformations)
will be the same.

3 Killing Vector Fields

Consider the infinitesimal change in a metric, g4, generated by a vector field, f:
% = 2% + ef*(2), (3.1)
where € is an infinitesimal constant®. The result of the mapping Eq. (3.1) (see Fig. 3)
is to move a point P(z®) to point P’ with coordinates z® + ef®(2”). Similarly, a
neighboring point Q(x® + dz®) will be moved to point Q' (x® + dz® + €f(z® + dz®))
(or, up to first order in differentials, Q'(z* + da® + e f* + ef*  dx7).
The infinitesimal interval P'Q)’ is

(% +dx® +ef* +ef* dx7) — (2% + ef?) (3.2)

or

da® + ef® dx”. (3.3)
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The length, ds-, of this interval is given by

ds° = Gop(x? + €f7)(dz™ + efo‘ﬂd:):“)(dxﬁ + efﬁﬂd:):“)
= (gap + €Gap f7)(dz® + ef* da”)(da” + efP da"). (3.4)

Expanding Eq. (3.4), neglecting terms of order €2, and rearranging dummy indices
results in

05" = gupdr®dr” + €(gag [ + ooy Sy + Grpf7 o) A2 (3.5)

With the definition
280!5 = gaﬁ,’yf’y + goe*yf’y,ﬁ + g'yﬁf’y,a (36)

the change in the metric may be written as

1 —
E(d82 — ds?) = 2s4pda™ da” . (3.7)

Because the left hand side of this equation is a scalar and dz®dz” is a symmetric

tensor it may be inferred that the symmetric quantity s,z is a covariant tensor®.

The structure of the right hand side of Eq. (3.6)

9ot + G S 5+ Gy5f " o (3.8)

combines partial differentiation and a vector field and arises in precisely this form
in many applications. The operation is important enough to have its own name and
symbol. It is called the “Lie derivative” of a geometric object (in this instance, the
metric tensor, g,,) with respect to a vector field, f, and is written £;. Thus, Eq.
(3.6) may be written as

,Cfgaﬁ = 2Saﬁ . (39)

In the special case where the metric tensor is invariant under the transformation
we will have Lg,3 = 0. Then the vector f is, by definition, a Killing vector. Killing
vectors are customarily designated by the symbol &. For Killing vectors, then, we
have

Legap = 9apr& + 9ar&’ g+ 98,87 0 = 0. (3.10)

This equation can be written in a different form, useful for many purposes, viz.,

‘Cﬁgaﬁ = ga;ﬁ + gﬁ;a =0. (311)

The identity of these 2 forms can be demonstrated by expressing both in geodetic
coordinates. The result is identical expressions. Consequently, they are identical
in any choice of coordinates. Alternatively, expansion of the covariant derivatives
of Eq. (3.11) yields precisely Eq. (3.10). Any 2-index tensor may be expressed as



the sum of a symmetric and skew-symmetric tensor. Equation (3.11) indicates that
the symmetric part of the tensor &, 5 vanishes. Because infinitesimal displacements
generated by Killing vectors leave the metric unchanged, these displacements map
geodesics onto neighboring geodesics. Note, also, that Egs. (3.6) may be read in
either of two ways. Given a metric, they provide the means for the determination of

its Killing vectors or given a set of Killing vectors, determining the metric. The latter
is ill-defined.

4 Killing Vectors in Flat Spacetimes

In flat spacetimes Cartesian coordinates may be introduced. Consequently, in Eqgs.
(3.11), covariant derivatives may be replaced by partial derivatives and the right hand
portion becomes

§a75 + 55,(1 =0. (41)
By differentiation we get
gavﬁv’y _l— 6670577 = 0 (4'2)
and by cyclic permutation of the indices we obtain
€80 T &80 =0 (4.3)
and
gfy,a7ﬁ _I_ €a7y7ﬁ - 0 . (44)

Addition of Egs. (4.2) and (4.3), subtraction of Eq. (4.4), and recognition that second
partial derivatives commute, results in the differential equations

2, 0p=0. (4.5)

The solutions of these equations are the general linear functions
£o = Aupt® + B, (4.6)

where A,3 and B, are constants. If Eq. (4.6) is substituted into Eq. (4.1) we find
immediately that A, is skew-symmetric

Aop = —Apa - (4.7)

We see, thus, that an n-dimensional flat space has n(n + 1)/2 independent Killing
vectors. For Minkowski spacetime this is just 10. This demonstration depends in
an essential way on the flatness of the spacetime. It is this fact which permits the
substitution of partial for covariant differentiation and consequent ability to reorder
the differentiation.



5 Conformal and Homothetic Motions

In addition to the mappings described by Killing vectors, there are other classes
of transformations generated by vector fields which are important in the present
context. These are the so called “homothetic” and “conformal” motions. In these
cases, respectively, the metric tensor is either multiplied by a constant or a scalar
function. The generators are termed homothetic or conformal Killing vectors. In
these cases the stress tensor is proportional to the metric. Both cases are subsumed
in

§ai8 + &0 = Japr€’ + 9ar g+ 94887 o = 209as - (5.1)

It is simple to determine 0. Contract Eq. (5.1) with ¢®’; simple manipulation
yields o = £V /n and

2
gaﬁ,«/@ + gorygﬂyﬂ + g'yﬁg’y,a = Eg’y;—ygaﬁ (52)
where n is the dimension of the manifold. If {7, is a constant, the Killing vector, by
definition, describes homothetic motions; and if 7. is a scalar field, say ¢(z®), the
motion is called conformal.
Similarly to Egs. (3.11) this may be written as
2
§aip + 860 = E{Y;wgaﬁ or
2 Y
Legup = €00 (5.3)

In this instance the trace-free symmetric part of {,.3 vanishes.

Again, for flat spacetimes, the situation is vastly simplified. A special homoth-
etic Killing vector is given by

§* = ra® (5.4)
where £ is a constant. (See Fig. 4.) The most general homothetic Killing vector is
ga = (’inaﬁ + Aaﬁ)x'@ + Ba (55)

where A,3 = —Ag,. This is readily verified by substitution into in Eq. (5.1) and
replacing covariant by partial derivatives. In this instance the coordinate grid is

uniformly stretched or shrunk. Similarly, it is easy to confirm that
1
goe = (naﬁc’y - inﬁ'yCa)lﬂx’y (56)

where 7,4 is the flat space metric and C, are constants, are special conformal Killing
vectors.



6 Redshifts Derived from Killing Vectors

The calculation of redshifts is extremely simple in spacetimes possessed of time-like
conformal Killing vector fields parallel to the world lines of source and observer.
Consider Eq. (1.1), Weyl’s universal definition of redshift,
ds'
1 = —. 6.1

+ z T (6.1)
The event P(z®) at the source is connected to the event Q(y*) at the observer by
a null geodesic. (See Fig 4.) A conformal Killing vector field £* moves P(z®) into
P'(z* + e£%(2”))and Q(y*) into Q'(y* + €£%(y?)) and the null geodesic connecting P
and @ into the null geodesic connecting P’ and )’. We have then respectively

ds =| e¢"(a”) | and ds' =[e*(y") | (6.2)

and thus

. J gop (Y& (1€ () 63)

Gap(27)E (27)EP (27)

This holds if the Killing vector field is tangent to the world line of the source at its
point of emission and tangent to the observer’s world line at the point of reception. If
source and observer move on conformal time-like Killing lines this condition is fulfilled
at all times.

7 Doppler Effect in Minkowski Spacetime

Weyl’s definition of redshift, 1 4+ z = ds’/ds, readily provides the usual formula for
relativistic Doppler effect in flat spacetime. Take the world line of the source to be

¥ =

t
x =y = z = 0. (7.1)

For the world line of the (inertial) observer we take a straight line through the
origin with slope (3
r=0t, y=2=0. (7.2)

Light emitted by the source at time ¢t will be received by the observer at time t'. (See
Fig. 5.) If the observer is receding from the source he or she will see the light at

=0t ¢y =2=0. (7.3)



The homothetic Killing vector (5.4) has the lengths, respectively, at source and ob-
server of st and k(t? — 2'2)1/2. We readily obtain from Eq. (6.3)

] 9asW)E(y)EP (y7)

tre s J Gaaa) & (a7)EP (a7

% — g2

t

II=P

t/ _ x/
V=

-5

1
_ % (7.4)

This is the relativistic Doppler formula for a receding observer. For an approaching
observer replace 3 by —/.

It is instructive to apply Weyl’s definition of redshift, Eq. (1.1) to Minkowski
spacetime with the spatial part expressed in polar spherical coordinates.

ds* = dt* — dr* — r*(d6* + sin® 0 dp?) . (7.5)

We introduce 4-dimensional polar coordinates with the coordinate transformation
t T cosh x
<r>_<Tsinhx> ' (7.6)

dt = dT cosh x + T sinh xdx
dr = dT sinh x 4+ T cosh xdx (7.7)

The differentials are

The result is
ds® = dT? — T? [dx* + sinh? y (d6? + sin® 0 dp?)] . (7.8)

This maps the interiors of the past and future light-cones of Minkowski spacetime
into, respectively, linearly contracting and expanding spaces of constant negative
curvature. (See Fig. 6.) A straight world line through the origin would be just

r
B=7 (7.9)
which by virtue of Egs. (7.6) would map into

B =tanhy. (7.10)
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In the mapped space, such lines are, at constant {x, 0, ¢} with x as the rapidity.
We now use the homothetic Killing vector Eq. (5.4) to construct a linear first-order

differential form
Eoda® = kxodx® = k(tdt —rdr). (7.11)

In Eq. (7.8), with use of Eqgs.(7.7), this is readily found to be
Eodx® = KTdT . (7.12)

The length of the homothetic killing vector in the new coordinate system is thus k7T’
and the redshift is

/

T
1 = —. 7.13
+ z T ( )

8 More Redshifts

8.1 Cosmological Redshifts

The last example leads us directly to the calculation of redshift in the Friedmann
cosmological models”®

ds* = dt* — R*(t)[dx* + S*(x)(d#* + sin? d¢?)] (8.1)

where S determines the curvature of the 3-space,

sinxy, positive
S = x, flat . (8.2)
sinh y, negative
With Eq. (5.2)
2
9o + gl 5+ 9yp8" 0 = —E€7 1 Gap (8.3)

it is readily confirmed that
£ = R(t)d% (8.4)

is a conformal Killing vector tangent to the world line of the source at y = 0 and also
tangent to the observer’s world line at {y, 0, ¢ = constant}.

It follows from application of Eq. (6.3) that the redshift is

_ R(t)
142z= R(D) (8.5)

for a light signal emitted at time ¢ and received at t'.
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8.2 Redshifts in Stationary Spacetimes

The general stationary spacetime may be written as
d82 = goodt2 + 2g02dtdl'2 + gwdl’ldl’j (86)

with 8ga5/8t =0.

Because the field is stationary it necessarily possesses a time-like Killing vector.
The simplest assumption is
£ =10%. (8.7)

This is readily verified by use of Eq. (3.10)

9apn€ + 9ar€’ g+ 95,87 0 = 0. (8.8)

We then have, as earlier,

Nea(p!\EB (!
Lhe o [E@ew)
rs(2)€7 ()€ ()
/
_ | el®) (8.9)
gOO(I)
If the world line of the source is 27 = const and that of the observer is 2/ = const,

both are tangent to a Killing vector of this field.

One of the most important of the stationary metrics is the Schwarzschild-Droste
(SD) metric It is scarcely known among relativists that the determination of the metric
for a point mass was accomplished almost simultaneously with Karl Schwarzschild by
Johannes Droste, a Ph.D. student of H. A. Lorentz. The form of the metric (8.10)
was actually due to Droste”.

1
ds? = (1 _ 2—m> dt? — (1 - 2—”‘) dr? — r2(d6? + sin® 6d¢?) . (8.10)

r r

By virtue of the Birkhoff theorem!®!?, all spherically symmetric, vacuum metrics are
stationary and equivalent to Eq. (8.10). Application of Eq. (8.9) yields the redshift

1 - 2m/r

For the case where v’ = r + dr with dr << r we easily obtain

11



ov G M or
=5 (8.12)
v cr
In the usual special relativistic approximation!? the “mass” of the photon is
taken to be hv/c* and the change in energy as it moves through a vertical distance
or is

hv
AFE = ggér (8.13)

where g is the local gravitational acceleration GM /r?.

8.3 Comments

Both the preceeding subsections discuss “elementary” situations. In the cosmological
case the emitter is at rest in the coordinate system given by the metric (8.6). In
physical terms terms it is at rest with respect to the background microwave radiation
or equivalently, has no “peculiar” motion. If the emitter does have a peculiar velocity
the situation is substantially more complicated. Moreover the usual observers are
either earthbound astronomers or the Hubble Telescope which provides a peculiar
motion at the receiving end. But, this is quite small relative to other sources of error.

In the case of redshift due to differences in gravitational potential of emitter and
observer in a stationary spacetime the situation is more clearly defined. An example
is the Pound-Rebka experiment!® where the difference is precisely known and both
emitter and observer are at rest. A different and substantially more complex situation
is is presented by the Global Positioning System!*. Here, the observers are at rest
and the emitters are not only at a different gravitational potential, they are moving
with high velocity If a metric has Killing vectors in addition to the ones discussed
for the radial Doppler effects they can be used for describing Doppler effect due to
relative velocities of sources and observers with respect to a distinguished time-like

direction given by a (conformal) Killing vector defining a local state of rest.

9 Conservation Theorems

One of the most important properties of Killing vectors is their utility in the derivation
of conservation theorems. These are obtained in conjuction with the tangent vectors
of geodesics. These are the null vectors for photons and the tangent vectors for

12



force-free point masses. The geodesics are provided by the solutions of the geodesic
equation

dke
ot { 60‘7 } Kk =0 (9.1)

where \ is an affine parameter ' along the trajectory and k% = dax®/d\. Note that
Eq. (9.1) may be written as
k*gk" =0. (9.2)

Also, for photons and unit masses we have, respectively
k%, =0 and 1. (9.3)

For a Killing vector, & and the tangent vector, k, to a geodesic, the product & = £,k
is constant along the geodesic. This product is constant because the directional
derivative of £ along the geodesic vanishes.

£ = (k)pk”
= k*3k°¢o + Enph®k’ = 0. (9.4)

On the right hand side the first and second terms vanish by virtue, respectively, of
the geodesic equation, Eq. (9.2) and the skew-symmetry of 5. (See Eq. (3.11).)
Consequently, £ = 0 and £ is constant along the geodesic.

Equation (9.4) is valid for either photons or point masses. For photons there is
an additional possibility. If the metric admits either a homothetic or conformal Killing
vector a similar integral exists. The second term in Eq. (9.4) will vanish because &,.3 is
symmetric and proportional to g,s and £ is a null vector. In either event the integral
is identical in form to that for Killing vector fields, that is, &€ = &, k“ = constant.

Killing vectors are indispensable for the invariant formulation of conservation
theorems for fields and extended bodies. Local conservation laws are expressed as the
covariant divergence of a symmetric tensor

T 5=0, T =1, (9.5)
Given a Killing vector &, define the quantity S° = £,7*°. We then have
Sﬁ;ﬁ - fa;ﬁTaﬁ + faTaﬁ;ﬁ =0. (9.6)

The first term vanishes because skew-symmetric and symmetric tensors are con-
tracted; the second term vanishes by virtue of the definition of one of its factors.
Now, the covariant divergence of a vector may be written as'®
1
%5 = ——=(vV=95"),s=0. (9.7)
V=9
13



which is a true conservation law.

If, in addition to being symmetric, 7%’ has a vanishing trace, that is 7 g, = 0,
as is the important case of electromagnetic energy-momentum tensor, then conserva-
tion laws involving conformal Killing vectors may be obtained. In the first term of
Eq. (9.6) substitute in accordance Eq. (5.1). This results immediately in

SP 5= 0gagT™ + T 5=0. (9.8)
On the right hand side both terms obviously vanish.
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Figure 1: Weyl’s Geometry of the Doppler Effect
The points P and P’ on the worldline of a point-like light source are the origin of
surfaces of constant phase that form future null cones. The worldline of the observer
intersects these two light cones in points Q and @’. The light signals PQ and P'Q)’
are given by null geodesics in the ray approximation. We draw the light cones as
having “straight” sides, but that is strictly a convention; the intervening spacetime
could be curved.

Figure 2: Doppler Geometry
The notation is the same as in Figure 1. If the light-emitting process in the source
has the infinitesimal period lasting from events P to P’ it will be perceived by the
observer of having a period lasting from @ to @'. The ratio of their proper times
ds'/ds is the redshift 1 + z.

Figure 3: Killing Motion
The vector field £* moves two neighboring points P and @) by €£“ into the points P’
and @'. This will in general change the distance ds of the infinitesimal interval PQ
into the distance ds of P’Q’. If ds = ds for all neighboring points @, then £* is a
Killing vector field.

Figure 4: A Conformal Vector Field for Source and Observer
The conformal Killing vector field moves the null geodesic connecting P(x) with Q(y)
into another null geodesic connecting P’ with @’. If source and observer move on
conformal Killing lines, the redshift 1 4 z is given by the ratio of the length of the

Killing vectors [£(y)|/]&(x)].

Figure 5: Radial Doppler Shift in Minkowski Spacetime
Coordinates are chosen to assume source and observer are in a 4-dimensional plane
with the source as time axis. A light signal emitted by the source at time ¢ is received
by the observer at distance x and time t’. With speed of light = 1, we have x =t/ —t.

Figure 6: 4-dimensional Polar Coordinates for Spacetime
Straight time-like world lines through the origin lie at constant rapidity x. The
transformation t = T cosh y, r = sinh y gives 7?2 = t?> — 2. T measures proper time
along the rays originating from the origin. T is also the length of the homothetic
Killing vector.
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