Killing vector fields



Killing vector fields give the infinitesimal isometries of a manifold M  $\,$  here the sphere  $S^2\,\,\,\circ\,\,$ 

X1,X2,X3即是 Lie algebra so(3)中的無窮小生成元(infinitesimal generators),

 $[X_i, X_j] = \varepsilon_{ijk} X_k$ ,  $\varepsilon_{ijk}$ 稱為 Levi-Civita symbols

$$\frac{d}{d\theta}\Big|_{\theta=0} \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = -y\partial_x + x\partial_y$$

The number of isometries is the number of linearly independent Killing vector fields °

We refer to an n-dimensional manifold with  $\frac{n(n+1)}{2}$ 

Killing vectors as a maximally symmetric space °

Symmetry and Lie algebra

We expect  $S^2$  to have symmetry under the action of SO(3)  $\circ$ 

$$Z = -y\partial_x + x\partial_y = \partial\varphi , \quad X = -z\partial_y + y\partial_z , \quad \text{let} \quad [Z,X] = -z\partial_x + x\partial_z = Y$$

Then [X,Y] = Z, [Y,Z] = XSpan{X, Y, Z} = Lie algebra so(3) X  $\cdot$  Y  $\cdot$  Z are the Killing fields that generate so(3)  $\circ$ 

Since  $L_{[X,Y]} = L_X L_Y - L_Y L_X = 0$ , we can find a third Killing vector by taking the

commutator of the first two , given that X and Y are independent Killing vector fields , i.e.  $[X, Y] \neq 0$ 

The Lie algebra elements X ,  $X_i \in so(3)$  generate the Killing fields X,  $x_i$  on M through

their Lie algebra action °

Like the matrices  $X_i$ , the Killing fields  $x_i$  are linearly independent, forming a basis of the Lie algebra of Killing fields on  $S^2$ .

That is , as we can expand  $X = aX_1 + bX_2 + cX_3$  , we likewise get

 $x = ax_1 + bx_2 + cx_3$ , where the latter means point-wise addition of vectors in each  $T \times M$ at each  $x \in M \circ$ 

Hidden Symmetries of Dynamics in Classical and Quantum Physics by Marco Cariglia

## Example

Consider the usual Euclidean space  $(R^3, dx^2 + dy^2 + dz^2)$ , there are at most 6 linearly independent Killing fields  $\circ$ 

•  $T_s(x, y, z) = (x + s, y, z)$  is a 1-parameter family of isometries, since we have that  $DT_s(x, y, z) = \text{Id}_{\mathbb{R}^3}$ . Thus

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0}T_s(x,y,z) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0}(x+s,y,z) = \partial_x$$

is a Killing field (we already knew that). Similarly we recover that  $\partial_y$  and  $\partial_z$  are Killing fields.