§ Conjugate points and the singularities of the exponential map

 $\gamma:[0,l] \to M$ 是一測地線 , $\gamma(0) = P$, $Q = \gamma(t_0)$ $t_0 \in [0,l]$

若存在一沿著 γ 不全為0的Jacobi 場J(t),使得 $J(0) = J(t_0)$,則稱Q是P的共 軛點(關於測地線 γ)。因此,上例中 球面上Q是P的共軛點。

Let $\gamma:[0,l] \to M$ be a geodesic and $\gamma(0) = p \circ$

The point $q = \gamma(t_0)$ is conjugate to p along γ if and only if $v_0 = t_0 \gamma'(0)$ s a critical

point of $\exp_p \circ$

In addition , the multiplicity of q as a conjugate point of p is equal to the dimension of the kernel of the linear map $(d \exp_p)_{v_0} \circ$

§ And the maximum number of such linearly independent fields is called the multiplicity

of the conjugate point to $\gamma(t_0)$

The order of multiplicity of conjugacy is the dimension of the space of Jacobi fields vanishing at p and q $\,\circ\,$

§ Theorem

Let γ be a smooth timelike curve connecting two points $p, q \in M \circ$ Then the necessary and sufficent condition that γ locally maximizes proper between p and q over smooth one parameter variations is that γ be a geodesic with no point conjugate to p between p and q \circ

The theorem is the basis for the singularity theorem of GR $\,\circ\,$