Examples of Jacobi fields

1. Jacobi equation
$$\frac{D^2J}{dt} + R(J, \gamma)\dot{\gamma} = 0$$

Assume $\gamma(t) = (\cos t, \sin t, 0)$, a geodesic lied in the equatorial plane \circ

Consider a variation of $\gamma(t)$ by rotating the sphere slightly around the x-axis \circ

This gives a family of geodesics : $\gamma_s(t) = (\cos t, \sin t \cos s, \sin t \sin s)$, where s is the parameter of the variation $\gamma_0(t) = \gamma(t)$

The Jacobi field J(t) is obtained by differentiating $\gamma_s(t)$ with respect to s at s=0

$$J(t) = \frac{\partial \gamma_s(t)}{\partial s}\Big|_{s=0}$$
, we have J(t)=(0,-sint,cost)

Interpretation:

- The Jacobi field $J(t)=(0,-\sin t,\cos t)$ describes how nearby geodesics (great circles) deviate from $\gamma(t)$ as s varies.
- At t=0, J(0)=(0,0,1), which is perpendicular to $\dot{\gamma}(0)=(0,1,0)$. This reflects the fact that the variation is orthogonal to the geodesic at t=0.
- As t increases, J(t) rotates in the plane orthogonal to $\dot{\gamma}(t)$, reflecting the curvature of S^2 .

2. $\omega(t)$ 是 γ 上切於緯圓 C_t 的平行向量場, $|\omega|=1$,且 $<\omega(t),\gamma'(t)>=0$

則
$$J(t) = (\sin t)\omega(t)$$
 是 γ 上的一個 Jacobi 場。

$$\frac{dJ}{dt} = (\cos t)\omega(t) + (\sin t)\omega'(t) , |\omega(t)| = 1, \omega \cdot \omega' = 0 ,$$

取切部,則
$$\frac{DJ}{dt} = (\cos t)\omega(t)$$
,同理

$$\frac{D}{dt}\frac{DJ}{dt} = (-\sin t)\omega(t)$$

因為 $\omega(t)$, $\gamma'(t)$ 皆為平行移動,故保持度量,即

$$<\omega(t), \gamma'(t)>=0$$

$$(\gamma'(t) \wedge \omega(t)) \wedge \gamma'(t) = \omega(t)$$

因此
$$(\gamma'(t) \wedge J(t)) \wedge \gamma'(t) = J(t)$$

$$R=K=1$$

$$\frac{D^2 J}{dt^2} + R(\gamma'(t), J(t))\gamma'(t) = (-\sin t)\omega(t) + (\sin t)\omega(t) = 0$$

所以 $J(t) = (\sin t)\omega(t)$ 是 γ 上的一個 Jacobi 場。

注意到
$$J(\pi)=0$$

3. A simple and explicit example of a Jacobi field on S^3

Let $\gamma(t) = (\cos t, \sin t, 0, 0)$ is a great circle in the (x_1, x_2) -plane of \mathbb{R}^4

Define the variation $\gamma_s(t) = (\cos t, \sin t, s \cos t, s \sin t)$, then J(t)=(0,0,cost,sint) is the Jacobi field \circ

在 S^3 上曲率恆為+1,Jacobi 場的通解在測地線上有著標準形式。由於 S^3 的截面曲率為 1,Jacobi 場的方程可簡化為:J''(t)+J(t)=0

其一般解為 J(t)=Acost+Bsin(t),其中 A,B 是測地線上與 $\gamma(t)$ 正交的恆向量。 幾何解釋:

這個 Jacobi 場可以理解為將測地線 $\gamma(t)$ 在不同的「大圓」之間平移的無窮小變化。由於 S^3 是均勻且各向同性的空間,Jacobi 場可以看作是產生等距同構(isometry)族的一部分,這些等距同構將一條大圓測地線變換為另一條。

Properties:

- 1. Orthogonality: The Jacobi field $J(t)=(0,0,\cos t,\sin t)$ is orthogonal to the tangent vector $\dot{\gamma}(t)=(-\sin t,\cos t,0,0)$ of the geodesic $\gamma(t)$. This is a general property of Jacobi fields arising from variations through geodesics.
- The Jacobi field $J(t)=(0,0,\cos t,\sin t)$ describes how nearby geodesics deviate from $\gamma(t)$ as s varies.
- At t=0, J(0)=(0,0,1,0), which is perpendicular to $\dot{\gamma}(0)=(0,1,0,0)$. This reflects the fact that the variation is orthogonal to the geodesic at t=0.
- As t increases, J(t) rotates in the (x_3, x_4) -plane, reflecting the curvature of S^3 .
- 3. Behavior of J(t): The Jacobi field $J(t)=(0,0,\cos t,\sin t)$ oscillates sinusoidally as t increases. This reflects the positive curvature of S^3 , which causes nearby geodesics to converge and diverge periodically.