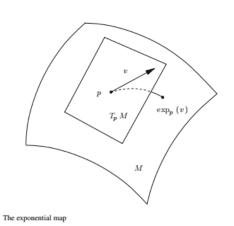
§ Exponential Map

There are two kinds of exponential map:

The exponential map of a connection and a Lie group •

When a Lie group has a bi-invariant Riemannian metric $\,$ as all compact Lie groups do $\,$ the exponential map for the Lie group coincides with the exponential map of the Riemannian connection $\,$

\S The exponential map of a connection , denoted as Exp_p



M is a manifold with an affine connection $\gamma_{v}(t)$ 是從 $p = \gamma_{v}(0)$ 出發、切於 V 的測地

線 (即
$$\gamma_{\rm V}(0) = p, \frac{d\gamma_{\rm V}}{dt}(0) = V$$
)

給定 $p \in M$,定義 $\exp_p : T_p M \to M$ 使得 $Exp_p V = \gamma_V(1), \forall V \in T_p M$

(可以導出 $\gamma_X(t) = Exp_p(tX), \forall t$)

That is defined locally \circ If the exponential map well-defined at every point of the tangent bundle \circ then the affine connection called complete \circ

The range can fail to be all of M simply because there can be two points that are not connected by any geodesic \circ

The domain can fail to be all of T_p because a geodesic may run into a singularity \circ

Manifolds that have such singularities are known as geodesically incomplete •

[An Introduction to Riemannian Geometry p.110]有 normal neighborhood 的命題,然後定義 normal ball p.115 習作 3.4.8 有 normal coordinates 的定義。

§ normal neighborhood

 $Exp_p: T_pM \to M$ is a local diffeomorphism

 $X \to \gamma(1)$ where X is the tangent vector of the geodesic γ at p \circ

$$X = \frac{d\gamma}{dt}(0), Exp_p(0) = \gamma(0) = p$$

Then \exists V(opn) in T_pM , such that $Exp_p:V\to U$ is a diffeomorphism, U is called a normal neighborhood of p.

§ Normal coodinates

Fix a point p in a Riemannian manifold M •

There is a neighborhood V of 0 in T_pM and a neighborhood U of p in M such that the exponetial map $Exp_p:V\to U$ is a diffeomorphism \circ

Using the exponential map we can tramsfer coordinates on $T_p M$ to M \circ

Choose an orthonormal basis $e_1,...,e_n$ for T_pM and let $r^1,...,r^n$ be the coordinates with respect to the orthonormal basis $e_1,...,e_n$ on T_pM \circ

Then $x^1 \coloneqq r^1 \circ Exp_p^{-1},...,x^n \coloneqq r^n \circ Exp_p^{-1}$ is a coordinates system on U such that the tangent vectors $\frac{\partial}{\partial x^1},...,\frac{\partial}{\partial x^n}$ are orthonormal at p \circ

The coordinate neighborhood $(U, x^1, ..., x^n)$ is called a normal neighborhood of p and $x^1, ..., x^n$ are called normal coordinates on U \circ

In a normal neighborhood of p $\,$, the geodesics through p have a particularly simple expression, for the coordinate expression for the geodesic $\gamma(t) = Exp_p(at)$ for

$$a = \sum a^i e_i \in T_p M$$
 is $x(\gamma(t)) = r \circ Exp_p^{-1}(\gamma(t) = at)$

We write this as $(x^1,...,x^n) = (a^1t,...,a^nt)$

Exercse 3.4.8

(2) Let M be a Riemannian manifold and ∇ the Levi–Civita connection on M. Given $p \in M$ and a basis $\{v_1, \ldots, v_n\}$ for T_pM , we consider the parameterization $\varphi: U \subset \mathbb{R}^n \to M$ of a normal neighborhood given by

$$\varphi(x^1,\ldots,x^n) = \exp_p(x^1v_1 + \cdots + x^nv_n)$$

(the local coordinates (x^1, \ldots, x^n) are called **normal coordinates**). Show that:

- (a) in these coordinates, $\Gamma^i_{jk}(p)=0$ (Hint: Consider the geodesic equation); (b) if $\{v_1,\ldots,v_n\}$ is an orthonormal basis then $g_{ij}(p)=\delta_{ij}$.

指數映射用來定義常態座標(Riemannian normal coordinates, or locally inertial coordinates)以簡化計算。

§ Theorem

In a normal neighborhood $(U, x^1, ..., x^n)$ of p , all the partial derivatives of g_{ij} and all the Christoffel symbols Γ^i_{jk} vanish at p \circ

Let $(x^1,...,x^n) = (a^1t,...,a^nt)$ be a geodesic through p \circ

It satisfies the geodesic equations $\ddot{x}^i + \sum_{i,k} \Gamma^i_{jk} \dot{x}^j \dot{x}^k = 0$ or $\sum_i \Gamma^i_{jk} a^j a^k = 0$

Since this is true for all $(a^1,...a^n)$ at p · Setting $(a^1,...a^n) = (0,...1,0,...0,1,...0)$

with $a^j=a^k=1$ and all other entries 0, we get $\Gamma^i_{jk}+\Gamma^i_{kj}=0$

by the symmetry of the connection , $\Gamma^i_{jk}=0$ at p \circ (At other points , not all of

 $(x^1,...,x^n) = (a^1t,...,a^nt)$ will be geodesics \circ

by the compatibility of the connection ∇ with the metric,

$$\partial_k g_{ij} = \partial_k <\!\!\partial_i, \partial_j > = <\!\!\nabla_{\partial_k} \partial_i, \partial_j > + <\!\!\partial_i, \nabla_{\partial_k} \partial_j >$$

At p , $\nabla_{\partial_k}\partial_i=0$ and $\nabla_{\partial_k}\partial_j=0$ since all the Christofell symbols vanish \circ

Therefore $\cdot (\partial_k g_{ij})(p) = 0$

Normal coordinates are especially useful for computution ' because at the point p' all $\nabla_{\partial_{\iota}}\partial_{i}=0$

在一個黎曼流形(M,g) 因為存在 totally normal neighborhoods,因此可以用極小化的測地線連接 M 上距離夠小的兩點,因此而有 Hopf-Rinow 定理。

Gauss lemma

在 normal neighborhood 内 其邊界 $\partial B_p(r)$ 與從 p 點出發的測地線垂直。

證明在 p.111~112

§ Left-invariant vector field on a Lie group

 $\eta = T_e G$ is the Lie algebra of Lie group G

$$TM \stackrel{df}{\to} TN$$
 $(f_*X)_{f(p)} \coloneqq (df)_p X_p$, the map is a diffeomorphism $X \uparrow \qquad \uparrow f_*X$ $L_g : G \to G$ $h \mapsto g \cdot h$ Is called left-muptiplication

For a induced map $(L_g)_*:T_h(G)\to T_{gh}(G)$, a vector field X is called left-invariant

$$\Longleftrightarrow (L_{g})_{*}X = X \ \ \text{for all} \ \ g \in G$$
 , that is $((L_{g})_{*}X)_{gh} = X_{gh}$

or
$$(dL_g)_h X_h = X_{gh}$$
 for all $g, h \in G$

let { left-invariant vector fields on G }= $\chi_L(G)$, then $\chi_L(G) \cong \eta$

for each
$$\ V \in \eta$$
 , $\ X_g^V := (\mathrm{dL}_g)_e V$ for any $\ g \in G$

Then the vector field X_h^V is left-invariant

$$(dL_g)_h X_h^V = (dL_g)_h (dL_h)_e V = (d(L_g \circ L_h))_e V = (dL_{gh})_e V = X_{gh}^V$$

§ The local flow φ_t of a left-invariant vector field X on a Lie group G commutes with left-multiplication $L_g \circ \varphi_t = \varphi_t \circ L_g$ for all $g \in G$, whenever both sides are defined \circ

§ The exponential map of a Lie group, denoted as exp

Let G is a Lie group ' $X \in \eta$ $^{\circ}$ Let X_{γ} be the integral curve of X starting at the identity $^{\circ}$ Then the exponential map $\eta \to G$ ' $\exp X = \gamma_X(1)$

The exponential map $\exp: \eta \to G$ is the map that v to each $v \in \eta$ assigns the value $\psi_1(e)$, where ψ_t is the flow of the left-invariant vector field $\mathbf{X}^{\mathbf{V}}$

If G is a group of matrices, then for $A \in \eta$ $\exp A = e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$

$$h(t) = e^{At}$$
 satisfies (1) $h(0) = e^{0} = I$ (2) $\frac{dh}{dt} = e^{At}A = h(t)A$

h(t) is the flow of X^A at the identity and so $\exp A = \psi_1(e) = e^A$

Proposition 15.9. (i) For $X_e \in \mathfrak{g}$, the integral curve starting at e of the left-invariant vector field X is $\exp(tX_e) = c_X(t) = \varphi_t(e)$.

- (ii) For $X_e \in \mathfrak{g}$ and $g \in G$, the integral curve starting at g of the left-invariant vector field X is $g \exp(tX_e)$.
- (iii) For $s, t \in \mathbb{R}$ and $X_e \in \mathfrak{g}$, $\exp((s+t)X_e) = (\exp sX_e)(\exp tX_e)$.
- (iv) The exponential map $\exp: \mathfrak{g} \to G$ is a C^{∞} map.
- (v) The differential at 0 of the exponential map, $\exp_{*,0}$: $T_0(\mathfrak{g}) = \mathfrak{g} \to T_eG = \mathfrak{g}$ is the identity map.
- (vi) For the general linear group $GL(n, \mathbb{R})$,

$$\exp A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$
 for $A \in \mathfrak{gl}(n,\mathbb{R})$.

(proof followed) 杜武亮 p.120

Let $\phi: R \to G$ be a smooth Lie group homomorphism, and let $A = \phi'(0) \in T_eG$ be a

tangent vector at the identity o

 $(R 是加法群, G 是乘法群 :: \phi(0) = I)$

Such homomorphism is called an one-parameter subgroup of G •

Let G=GL(n, R) this a matrix group, so the tangent vector at identity is a matrix of

Since $\phi(s+t) = \phi(s)\phi(t)$, evaluating the derivative at s=0 gives

$$\left(\frac{d\phi}{dt} = \lim_{h \to 0} \frac{\phi(t+h) - \phi(t)}{h} = \lim_{h \to 0} \frac{\phi(t)\phi(h) - \phi(t)}{h} = \phi(t)\lim_{h \to 0} \frac{\phi(h) - I}{h} = \phi'(0)\phi(t)\right)$$

$$\frac{d}{dt}\phi(t) = \phi'(0) \cdot \phi(t) = A\phi(t)$$
, with $\phi(0) = I$

Then $\phi(t) = e^{At}$

So for any Lie group G , we define the exponential map $\exp: \eta \to G$

 $\exp(X) = \gamma_X(1)$ is a diffeomorphism

Let $A \in T_eG$, and $\phi: R \to G$ be the unique homomorphism such that $\phi'(0) = A$

Then $\exp(A) = e^A = \phi(1)$

The map $t \rightarrow e^{tA}$ is a local diffeomorphism from T_eG to G \circ

例 G=SO(3, R) then $T_eG = so(3, R)$

$$J_X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, J_Y = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, J_Z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\exp: so(3, R) \rightarrow SO(3, R)$

$$\exp(tJ_X) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{pmatrix} \text{ rotation around x-axis by angle t}$$

$$\exp(tJ_Y) = \begin{pmatrix} \cos t & 0 & -\sin t \\ 0 & 1 & 0 \\ \sin t & 0 & \cos t \end{pmatrix} \text{ rotation around y-axis by angle t}$$

$$\exp(tJ_z) = \begin{pmatrix} \cos t & -\sin t & 0\\ \sin t & \cos t & 0\\ 0 & 0 & 1 \end{pmatrix} \text{ rotation around z-axis by angle t}$$

參考書目

- 1. 大域微分幾何 黄武雄 第九章 p.257 p.424
- 2. Differential Geometry 杜武亮(Loring W.Tu) 第 15 章
- 3. An Introduction to Riemannian Geometry Jose Natario p.39 p.110 p.116
- 4. Geometry of Manifolds R.L.Bishop & R.J.Crittenden p.30