Exponential map 1

§ Exponential Map
There are two kinds of exponential map -
The exponential map of a connection and a Lie group °

When a Lie group has a bi-invariant Riemannian metric > as all compact Lie groups do °

the exponential map for the Lie group coincides with the exponential map of the
Riemannian connection ©

§ The exponential map of a connection > denoted as Exp,,

M is a manifold with an affine connection
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The exponential map

That 1s defined locally ° If the exponential map well-defined at every point of the tangent
bundle - then the affine connection called complete °

The range can fail to be all of M simply because there can be two points that are not
connected by any geodesic ©

The domain can fail to be all of T, because a geodesic may run into a singularity °

Manifolds that have such singularities are known as geodesically incomplete °
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§ normal neighborhood

Exp, :T,M — M is alocal diffeomorphism

X = y@) where X is the tangent vector of the geodesic y atp °

X =20, Bxp, )= 1) = p

Then 3 V(opn)in T,M - suchthat Exp,:V —U isa diffeomorphism * U is called

a normal neighborhood of p °

§ Normal coodinates
Fix a point p in a Riemannian manifold M -

There 1s a neighborhood V of 0 in T,M and a neighborhood U of p in M such that the
exponetial map Exp,:V —U is a diffeomorphism °

Using the exponential map we can tramsfer coordinates on T,M to M °

Choose an orthonormal basis €,....€, for T,M and let r',...,r" be the coordinates
with respect to the orthonormal basis €,...,€, on T,M -

Then X':=r'oExp.',..,x":=r"oExp," isa coordinates system on U such that the

0
tangent vectors y yeeny are orthonormal at p °

ox"

The coordinate neighborhood (U, X,...,x") is called a normal neighborhood of p and

x',..., X" are called normal coordinates on U ©
In a normal neighborhood of p  the geodesics througth p have a particularly simple

expression * for the coordinate expression for the geodesic y(t) = Exp,(at) for
a=Y a'e eT,M is x(y(t))=roExp,'(y(t)=at

We write this as (X', ...,x") =(a't,...,a"t)
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Exercse 3.4.8

(2) Let M be a Riemannian manifold and V the Levi—Civita connection on M. Given
p € M and a basis {vy, ..., vy} for T,M, we consider the parameterization
¢ : U Cc R" — M of a normal neighborhood given by

wlx . ..., ") = expp{xlvl + -+ x"vy)

(the local coordinates (_r' ..... x™") are called normal coordinates).
Show that:

(a) in these coordinates, l"j,. «(P) = O (Hint: Consider the geodesic equation);
(b) if {vy, ..., vy} 1s an orthonormal basis then g;; (p) = §;;.

FEEH A A2k B 5 BB R A (Riemannian normal coordinates * or locally inertial
coordinates) LEH{EETHEL ©
§ Theorem

In a normal neighborhood (U, X', ...,X")of p > all the partial derivatives of g; andall

the Christoffel symbols Fijk vanish at p °
Let (X',...,Xx")=(a',...,a"t) be a geodesic through p °

It satisfies the geodesic equations X'+ > Ty x) X =0 or Y I',a'a* =0
j.k

Since this is true for all (a',...a") atp © Setting (a%,..a")=(0,...1,0,...0,,...0)
with a’=a“=1 and all other entries 0 * we get I'j +I; =0

by the symmetry of the connection > I',, =0 at p * (At other points * not all of
(x,....x") =(a',...,a"t) will be geodesics ° )
by the compatibiity of the connection V with the metric »

5k9u :ak<ai,aj>:<v6kai,aj >+<8i,V6k6j >
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Atp> V,0,=0 and V,0;=0 since all the Christofell symbols vanish e

Therefore * (6,9;)(P) =0

Normal coordinates are especially useful for computution * because at the point p > all

V,8,=0
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§ Left-invariant vector field on a Lie group

n=T.G is the Lie algebra of Lie group G

M 4 TN (£.X)¢(p =(df), X, > the map is a diffeomorphism
Xt 71X
f L,:G—G
M= N h g-h Iscalled left-muptiplication

For a induced map (L), :T,(G) = T, (G) - a vector field X is called left-invariant

< (L). X=X forall geG > thatis ((Ly).X)q =X,

or (dL,), X, =X, forall g,heG
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let { left-invariant vector fields on G }= x, (G) - then x,(G)=n
foreach Ven » X;:=(dL,),V forany geG
Then the vector field X, is left-invariant

( dLg)h XX = (dLg)h(dLh)eV = (d(Lg °© Lh))ev = (dLgh)eV = X;h

§ The local flow ¢, of a left-invariant vector field X on a Lie group G commutes with

left-multiplication Ljo¢, =¢, oL, forall geG > whenever both sides are defined °

§ The exponential map of a Lie group > denoted as exp

Let GisaLie group > Xen - Let X be the integral curve of X starting at the

identity ° Then the exponential map 7 —>G > exp X =y, (1)

The exponential map exp:n — G is the map that > toeach V €n assigns the value
w,(€) » where w, is the flow of the left-invariant vector field X"

. . = A
If G is a group of matrices * then for Aen expA=e” = o
k=0 .

h(t) =e* satisfies (1)h(0) =€’ =1 (2) % " A=h(t)A

h(t) is the flow of X* at the identity and so exp A=y, (e) =e”*
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Proposition 15.9. (i) For X, € g, the integral curve starting at e of the left-invariant
vector field X is exp(tX,) = cx (t) = ¢(e).

(i1) For X, € g and g € G, the integral curve starting at g of the left-invariant vector
field X is gexp(tX,).

(iii) For s,t c Rand X, € g, exp ((s +1)Xe) = (expsXe)(exptXe).

(iv) The exponential map exp: g — G is a C~ map.

(v) The differential at O of the exponential map, exp, o: To(g) =g — T.G =g is the
identity map.

(vi) For the general linear group GL(n.R),

expA= )Y — forAcgl(nR).

(proof followed) F-E5 p.120

Let #:R—>G be a smooth Lie group homomorphism * andlet A=¢ (0)eT,G be a

tangent vector at the identity °

R ENLEEE » G2ACEEE -~ 4(0)=1)

Such homomorphism 1s called an one-parameter subgroup of G °

Let G=GL(n, R) this a matrix group > so the tangent vector at identity 1S a matrix °

Since @(s+1t) =@(s)p(t) > evaluating the derivative at s=0 gives
(g A0 _ i JOUD O _ )y K01

dt h~>0 h»O

=¢'(0)p(1)

%¢(t):¢'(o)'¢(t)=A¢(t) > with ¢(0) = I

Then @(t) =e™
So for any Lie group G » we define the exponential map exp:n -G

exp(X) =y, (D) is a diffeomorphism
Let AeT,G »and ¢:R—>G be the unique homomorphism such that #'(0) = A
Then exp(A) =e” =¢(1)

The map t—€" is alocal diffeomorphism from T.G to G °
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1 G=SO(3, R) then T,G =s0(3,R)

00 0 00 -1 0 -10
J,={0 0 -1,J,=/0 0 0[J,=[1 0 O
01 0 100 00 0

exp:so(3,R) » SO(3,R)

1 0 0
exp(td,)=|0 cost -—sint | rotation around x-axis by angle t
0 sint cost

cost 0 -—sint
exp(td,)=| O 0 rotation around y-axis by angle t
sint 0 cost

[EN

cost -sint 0

exp(td,)=| sint cost O | rotation around z-axis by angle t
0 0 1
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