Sean Carroll
第一章 Special Relativity and Flat Spacetime
- Prelude
- Space and Time
- LorentzTransformations
- Vectors
- Dual Vectors(One-Forms)
- Tensors
- Manipulating Tensors
- Maxwell's Equation
- Energy and momentum
- Classical Field Theory
- Exexcises
第二章 Manifolds
- Gravity as Geometry
- What is a Manifold
- Vectors
- Tensors
- The Metric
- An Expanding Universe
- Causality
- Tensor Desities
- Differential Forms
- Integration
- Exercises
第三章 Curvature
- Overview
- Covariant derivatives
- Parallel tranport and Geodesics
- Properties of Geodesics
- The Expanding Universe Revivisted
- The Riemann Curvature Tensor
- Properties of the Riemann Tensor
- Symmetries and Killing Vectors
- Maximally Symmetric Spaces
- Geodesic Deviation
- Exercises
第四章 Gravitation
- Physics in Curved Spacetime
- Einstein's Equation
- Lagrangian Formulation
- Properties of Einstein's Equation
- The Cosmological Contant
- Energy Conditions
- The Equivalence Principle Revisited
- Alternative Theories
- Exexcises
第五章 The Schwarzschild Solution
第六章 More general Black Holes
第七章 Perturbation Theory and Gravitational Radiation
第八章 Cosmology
第九章 Quantum Field Theory in Curved Spacetime