1. The Lagrange density for electromagnetism in curved space is
L=4y-¢ (—-%F‘LWFMU{-A“]”'), (4.156)

where J# is the conserved current.

(a) Derive the energy-momentum tensor by functional differentiation with respect to
the metric.

(b) Consider adding a new term to the Lagrangian,
»Cf = ﬁR}J,Ug,OO' Fﬂ"g F'ug.

How are Maxwell’s equations altered in the presence of this term? Einstein’s equa-
tion? Is the current still conserved?

2. We showed how to derive Einstein’s equation by varying the Hilbert action with respect
to the metric. They can also be derived by treating the metric and connection as inde-
pendent degrees of freedom and varying separately with respect to them; this is known

as the Palatini formalism. That is, we consider the action
S = f d*x/=g " Ry (),

where the Ricci tensor is thought of as constructed purely from the connection, not us-
ing the metric. Variation with respect to the metric gives the usual Einstein’s equations,
but for a Ricci tensor constructed from a connection that has no a priori relationship
to the metric. Imagining from the start that the connection is symmetric (torsion free),
show that variation of this action with respect to the connection coefficients leads to the
requirement that the connection be metric compatible, that is, the Christoffel connec-
tion. Remember that Stokes’s theorem, relating the integral of the covariant divergence
of a vector to an integral of the vector over the boundary, does not work for a general
covariant derivative. The best strategy is to write the connection coefficients as a sum
of the Christoffel symbols F[‘Uilv and a tensor C* s

A T2 A
F}.LU — FP,’U + C 'u'u,

and then show that C* ;,,, must vanish.



3. The four-dimensional 8-function on a manifold M is defined by
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for an arbitrary function F(x*). Meanwhile, the energy-momentum tensor for a pres-
sureless perfect fluid (dust) is
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where p is the energy density and U* is the four-velocity. Consider such a fluid that
consists of a single particle traveling on a world line x*(z), with 7 the proper time. The
energy-momentum tensor for this fluid is then given by
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where m is the rest mass of the particle. Show that covariant conservation of the energy-
momentum tensor, V, T#Y = 0, implies that x* (7) satisfies the geodesic equation,

4. Show that the energy-momentum tensors for electromagnetism and for scalar field the-
ory satisfy the dominant energy condition, and thus also the weak, null, and null domi-
nant conditions. Show that they also satisfy w > —1.

5. A spacetime is static if there is a timelike Killing vector that is orthogonal to space-
like hypersurfaces. (See the Appendices for more discussion, including a definition of
Raychaudhuri’s equation.)

(a) Generally speaking, if a vector field v# is orthogonal to a set of hypersurfaces
defined by f = constant, then we can write the vector as v, = hV,, f (here both f
and £ are functions). Show that this implies

U[O— Vl‘-"" UU] = O.

(b) Imagine we have a perfect fluid with zero pressure (dust), which generates a so-
lution to Einstein’s equations. Show that the metric can be static only if the fluid
four-velocity is parallel to the timelike (and hypersurface-orthogonal) Killing vec-
tor.

(¢) Use Raychaudhuri’s equation to prove that there is no static solution to Einstein’s
equations if the pressure is zero and the energy density is greater than zero.



6. Let K be a Killing vector field. Show that an electromagnetic field with potential
A, =K, solves Maxwell’s equations if the mefric is a vacuum solution to Einstein’s
equations. This is a slight cheat, since you won’t be in vacuum if there is a nonzero
electromagnetic field strength, but we assume the field strength is small enough not to
dramatically affect the geometry.



