Exercise 003 Curvature

1. Verify these consequences of metric compatibility (V,d,, =0)

If v,9, =0) then V,g*"=0,V,¢, =0

HVpo

(1) 9*g,, =0/ by productrule 9g*'V_g,,+9,,V,g* =0

v ' o

Since that V,g,, =0 > itimply V,g*" =0

Q) ¢ I¢] Empo * (2.69) here &umpo is constant called Levi-Civita symbol and

Hvpo =

&y 18 called Levi-Civita tensor

vig/zvpa = Euvpo vl \/|g ’

1
g| is a determinant V,,/|g| =6,|lg|=——0,9=0
2l9|

Vo9, =0 and V.9 =0 imply 0,9=0

2. You are familiar with the operations of gradient (V¢), divergence (V - V) and curl
(V x V) in ordinary vector analysis in three-dimensional Euclidean space. Using co-
variant derivatives, derive formulae for these operations in spherical polar coordinates
{r, 8, ¢} defined by

x =rsinfcosg (3.210)
y = rsind sing (3.211)
z =rcosf. (3.212)

Compare your results to those in Jackson (1999) or an equivalent text. Are they iden-
2. tical? Should they be?

Gradient V¢p=0,¢
Divergence V&V =VV'=0V'+T}V!

Curl VxV = g‘ikvj\/k _ 8ijk8ij +8ijkl—~lj<_lvl

1 0 0
The spherical polar metric for {r,6,4} is g; =0 r? 0
0 0 r?sin*@

The Christoffel symbols are



. 1 .
Iy, =—1I, =—rsin’0 » T}, =Ty, :F,TZ¢=—SIHQCOSQ

1

Iy, =T ==T} =T} =cotd
r

In spherical polar coordinates

Vi =0, f

VoV =0V +T\VI =TV +TV' +r§6v9=3vr +coteV’
r

In3.34 VV'= iéi (\/E[\/i) » here \/H =r?sin@ - we obtain the conclusion above

Jol

also °

VxV = kv v = gihg vk 4 giriy!
J J J

A table of £Y¥ in polar coordinates is useful
k gk

D6 |= [ |6 |D| -

S |[D|D[E |7 [T | m=
s |~ |8 |Do|D@6
[

The curl component is

VxV' =
VxV? =
VxV? =
3. Imagine we have a diagonal metric g,,,. Show that the Christoffel symbols are given
by
[y =0 (3.213)
ri{,;,t. = %(gll)_la}\.glru;. (3.214)

%= 0 (In Vigaal (3215)
Ity = o (ny/Tenl) (3.216)

In these expressions, i 7 v # A, and repeated indites are not summed over.



4. In Euclidean three-space, we can define paraboloidal coordinates (u, v, ¢) via
Xx=uvcos¢ y=uwuvsing z= %(uz —vh).

(a) Find the coordinate transformation matrix between paraboloidal and Cartesian co-
ordinates dx®/ ax#" and the inverse transformation. Are there any singular points
in the map?

(b) Find the basis vectors and basis one-forms in terms of Cartesian basis vectors and
forms.

(c¢) Find the metric and inverse metric in paraboloidal coordinates.

(d) Calculate the Christoffel symbols.

(e) Calculate the divergence V,, V# and Laplacian ¥V, V¥ f.

5. Consider a 2-sphere with coordinates (6,¢) and metric ds® = d@&” +sin® 8d ¢’
(a) Show that lines of constant longtitude (¢ =constant) are geodesics * and that the only

line of constant latitude (& = constant)that 1s a geodesic 1s the equator (8 = E)

(b) Take a vector with components V# = (1,0) and parallel-tranport it once around a
circle of constant latitude = What are the components of the resulting vector * as a
function of @

Longitude #XFE¥ > meridian £84% - latitude 4&/E

The Christoffel symbols are 'y, =—singcosé » Ty, =T, =cotd

6—sincos6(4)? =0...(1
The goodesic equation 1s @) @

$+2C0t00$=0..........(2)

(a) For lines of longitude €= 4,9 =Kk > both (1)(2)are satisfied °
For line of constant latitude d=k,¢=1 > (1) give us sin@dcos&=0 >

0=0,r, > » the first two 1s a degenerate line * and the latter 1s the equator °

(b) The equation of parallel-transport for a vector V* along a path X*(A4) is

dv*# dx?
+I# V* =0..(3
da P dA @

The path we are taking is given by d=K,¢=1

6

dV;t =sinkcoskV?...(4)

The 6@ component of (3) is



¢
The ¢ component of (3) is dd%=—cotkvg---(5)

(4

(4) differentiate for A and pluge into (5) » we obtain % =—cos’ kv*

The general solution is V¢ = Acos(¢cosk) + Bsin(¢cosk)

(y"=-k*y = y=asinkx+bcoskx)

VS SV

=———V"=—F—(—Acosksin(¢cosk) + Bcosk cos(¢cosk))
sink cosk sink cosk

If we started at ¢ =0 with our vector V* =(1,0) » V/(0)=1V?(0) =0

A=1 > B=0 - then V’ =cos(¢cosk),V*’ :—ﬁsin((/ﬁcosk)

Note that V|=g,V*V"' =V +sin* gV’ =1
The angle « between V(0) and V(27) is given by
cosa =<V (0),V (27) >=V°(27r) = cos(27 cosk)

a=2mcosk or o =2x(1-cosk)
[RG4102-25"2 (g) Foucault pendulum] [RG3302Parallel Transport]

6. A good approximation to the metric outside the surface of the Earth 1s provided by

ds? =—(1+2®)dt* + (1— 2®)dr + r*(d6* +sin’ dd¢°)

where

GM
=——"
;.

may be thought of as the familiar Newtonian gravitational potential. Here G is New-

ton’s constant and M is the mass of the earth. For this problem & may be assumed to

be small.

(a) Imagine a clock on the surface of the Earth at distance R; from the Earth’s center,
and another clock on a tall building at distance R, from the Earth’s center. Calcu-
late the time elapsed on each clock as a function of the coordinate time ¢. Which
clock moves faster?

(b) Solve for a geodesic corresponding to a circular orbit around the equator of the
Earth (6 = 7 /2). What is d¢p /dt?



(¢) How much proper time elapses while a satellite at radius Ry (skimming along the
surface of the earth, neglecting air resistance) completes one orbit? You can work
to first order in P if you like. Plug in the actual numbers for the radius of the Earth
and so on (don’t forget to restore the speed of light) to get an answer in seconds.
How does this number compare to the proper time elapsed on the clock stationary
on the surface?

7. For this problem you will use the parallel propagator introduced in Appendix I to see
how the Riemann tensor arises from parallel transport around an infinitesimal loop.
Consider the following loop:

xl=da

xl=0

Using the infinite series expression for the parallel propagator, compute to lowest
nontrivial order in da and 85 the transformation induced on a vector that is parallel
transported around this loop from A to B to C to D and back to A, and show it is
proportional to the appropriate components of the Riemann tensor. To make things
easy, you can use x! and x? as parameters on the appropriate legs of the journey.

. The metric for the 3-sphere in coordinates X* =(y,8,¢) can be written
ds® =dy? +sin®y(dg” +sin” 6d¢°)

(a) Calculus the Christoffel connection coefficients ¢ Use whatever ethod you like » but 1t

18 good practice to get the connection coefficients by varying the integral (3.49)

(b) Calculus the Riemann tensor » Ricci tensor * and Ricci scalar

(c) Show that R, = ﬁ (9,.95 —9,,9,,) 1s obeyed by this metric > confirming

that the 3-sphere 18 a maximally symmetric space °

dx# dx”

,————dr » ds* =dy?® +sin’ w(d&* +sin’* 6d¢*)
“dr dr

1 1
(a) |=§jfd1=5jg
_l dyv oo dO, o Lo de,
I_ZI[(—dT) +sin l'//(_dr) +sin“ysin 9(_dr) ldz

S(q) = I L(t,q(t), CI(t))dt > If it independent of t > then the E-L equation are



%-dia—L_ =0 » where L= () +sin?y(6)? +siny?sin? 9(p)*
T i

oq
For w > the E-L equation is S—L—di(a—lf)=0
y ur ol
i=23im//c05y/(¢.9)2+23inz//c031,//sin26?(4}5)2 » and i(a—L.):i(Zz/./):Zz/.}
oy dr oy dr

25im//cos;u(é)2 +2siny cosy sin® (9@)2 —29; =0
g;—sin z//cosx//(é)2 —siny cosy sin® 6’(¢.5)2 =0

The geodesic equation are )Zk+1“:]— X% =0 » here X =y
The geodesic equation 1s l/.}+ Iy, ((é?)2 +Ih, (1/./)2 =0

Thus we have T, =—siny cosy, I, =—siny cosy sin” &

. L d oL
For @ - the Euler equation is a_d (6—.) =0

aL - 2 - * 2
—=2sin“wsin@dcosd
20 7 (#)

i(a—lf) = %(sin2 w(20)) = 2siny cosy y(20) +2sin’ y 0

dz 59

0+ Zcotx//éz/'/—sin 60059(&)2 =0

Compare with 0+ rix'x) =0

We have Iy, =T, =coty,I';, =—sindcosd

Again for ¢ - the Euler equation is a_4a (a—L.) =0 > we have

o¢p dr 04

;5+200tl//l/./¢.5+200t9[9g.b20

b_T¢ — I
So I, =L}, =coty,I'y, =TT, =cotd



FE& = —sincos Y

I‘i{b = — sin ) cos ¢ sin® 6
Pie :Fngcot‘lf)

I‘g¢ = —sinfcos f
P$¢ - I‘fw = cot ¥
Iy, =T% =cotd

(b) The Rieman tensor components are

1//_'2’1//__'2 ,(//_'2'2,1//__'2'2
Roo =SIN“y > Ry, =-sin“y » RY  =sin“ysin®6 > R =-sin“ysin® 0
6 __1,R% =1, RP? —cin21,cin2Ag > RP? —_cin2 s 2
R,o="1>R,, =1 Ry =sinysin®d » R, =-sin"ysin° o

4 —__1,R" =15 R’ =—sinw > R’ =sin?

R, =-1" Rl =1 Rg, ==sin“y > Ry, =sin"y

The Ricci tensor is twice the metric R, =2guv

The Ricci scalar is 6

R . . . .
o = m (9,,90v-9,,9,,)is obeyed by this metric > confirming

that the 3-sphere 1s a maximally symmetric space °

(¢c) Show that R

9. Show that the Weyl tensor C# _ 1is left invariant by a conformal transformation °

vpo

10. Show that, for n > 4, the Weyl tensor satisfies a version of the Bianchi identity,

(n—3)

VpC‘ogl,w - 2@

1
V. Rue + ——gg[ﬂvle) . (3.221)
10. ( 2(n =1

11. Since the Poincare half-plane with metric (3.192) is maximally symmetric, we might
expect that it is rotationally symmetric around any point, although this certainly isn't
evident in the {x, v} coordinates. If that is so, it should be possible to put the metric in
a form where the rotational symmetry is manifest, such as

ds® = f2(r)[dr? + r2d6?]. (3.222)

To show that this works, calculate the curvature scalar for this metric and solve for the
function f(r) subject to the condition R = —2/a’ everywhere. What is the range of
11. the coordinate r?



12. Show that any Killing vector K* satisfies the relations mentioned in the text
V.V K’=R2 K" K*'V,R=0

ouv

13. Find explicit expressions for a complete set of Killing vector fields for the following
spaces
(a) Minkowski space > with metric ds* == —dt® + dx* + dy® +dz?
(b) A spacetime with coordinates {u,v,x,y} and metric
ds® = —(dudv + dvdu) + a® (u)dx® + b*(u)dy® > where a and b are unspecified
functions of u ¢ This represents a gravitational wave spacetime ° (Hints * which you
need not show : there are five Killing vectors in all » and all of them have a vanishing

u component K*)

(a) The Minkowski space Killing vectors correspond to the symmetries of the metric °

including

1. Translations ¢,,0,,0,,0,
2. Rotations  x0, —Y0,,y0, —120,,20, — X0,

3. Boosts t0,+x0,,10, +yo,,t0, + 20,

These 10 Killing vectors form the Poincare algebra » representing the full 1sometry group
of Minkowski space ©

14. Consider the three Klling vectors of the 2-sphere °
R=0,,S=cosgo, —cotdsingo,, T =—singd, —cotdcos¢o,

Show that their commutations satisfy the following algebra -
[R,SI=T > [S,T]=R > [T,R]S

R=0,  S=cosgo,—cotdsingo, » T =—singo, —cotdcosgo,

[X,Y]:Z(XYi -YX"e,

[R,S]=(RS'— SR8, + (RS? —SR?)?,

_,0co9 oA cot i _)_ B
(o Dot o 3,2- sin; ot gegs



[S,T]1=(ST'-TSYo, +(ST? —TSZ)8¢

ST -TS" = (cos¢d,, —cot dsin ¢d,,)(—sin @) — (—sin ¢o,, —cot @ cos ¢o,,)(cos ¢)
=cob sih c@s 6ot gcosy

ST? —TS? = (cos ¢o,, —cot &sin ¢d,,)(—cot cos ) — (—sin ¢, —cot §cos ¢o,, ) (—cot §sin ¢)

=1 > note that icot X = —CSC% X
dx

So [S,T]=R  [T,R]=...=S

[X,Y]“= X", Y*-Y"0,X*
[R,S]°=R'9,S’ ~S'0,R? =...=—sing - [R,S]’ =...=—cotHcos¢
Then [R,S]=-singo, —cotdcos¢d, =T

15. Use Raychaudhuri’s equation, discussed in Appendix F, to show that, if a fluid is flow-

ing on geodesics through spacetime with zero shear and expansion, then spacetime

15 must have a timelike Killing vector.

16. Consider again the metric on a three-sphere,
ds? = dy? + sin® ¥ (d9? + sin? 0 dg?). (3.226)

In this problem we make use of noncoordinate bases, discussed in Appendix J. In an
orthonormal frame of one-forms #(%) the metric would become

ds? =W @1 + i@ 4@ + §3) g4, (3.227)

(a) Find such an orthonormal frame of one-forms, such that the matrix ¢} is diagonal.
Don’t worry about covering the entire manifold.

(b) Compute the components of the spin connection by solving de? + w%, A ? = 0.

(¢) Compute the components of the Riemann tensor R?;,y in the coordinate basis

adapted to x* by computing the components of the curvature two-form R%p,,,,

and then converting.
16.



