- 1. Just because a manifold is topologically nontrivial doesn't necessarily mean it can't be covered with a single chart. In contrast to the circle S^1 , show that the infinite cylinder $\mathbf{R} \times S^1$ can be covered with just one chart, by explicitly constructing the map.
- 2. By clever choice of coordinate charts, can we make \mathbb{R}^2 look like a one-dimensional manifold? Can we make \mathbb{R}^1 look like a two-dimensional manifold? If so, explicitly construct an appropriate atlas, and if not, explain why not. The point of this problem

is to provoke you to think deeply about what a manifold is; it can't be answered rigorously without going into more details about topological spaces. In particular, you might have to forget that you already know a definition of "open set" in the original \mathbf{R}^2 or \mathbf{R}^1 , and define them as being appropriately inherited from the \mathbf{R}^1 or \mathbf{R}^2 to which they are being mapped.

- 3. Show that the two-dimensional torus T^2 is a manifold, by explicitly constructing an appropriate atlas: (Not a maximal one, obviously.)
- 4. Verify the claims made about the commutator of two vector fields at the end of Section 2.3 (linearity, Leibniz, component formula, transformation as a vector field).
- 5. Give an example of two linearly independent, nowhere-vanishing vector fields in R² whose commutator does not vanish. Notice that these fields provide a basis for the tangent space at each point, but it cannot be a coordinate basis since the commutator doesn't vanish.
- **6.** Consider \mathbb{R}^3 as a manifold with the flat Euclidean metric, and coordinates $\{x, y, z\}$. Introduce spherical polar coordinates $\{r, \theta, \phi\}$ related to $\{x, y, z\}$ by

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta,$$
(2.99)

so that the metric takes the form

$$ds^{2} = dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}.$$
 (2.100)

(a) A particle moves along a parameterized curve given by

$$x(\lambda) = \cos \lambda, \quad y(\lambda) = \sin \lambda, \quad z(\lambda) = \lambda.$$
 (2.101)

Express the path of the curve in the $\{r, \theta, \phi\}$ system.

- (b) Calculate the components of the tangent vector to the curve in both the Cartesian and spherical polar coordinate systems.
- 7. Prolate spheroidal coordinates can be used to simplify the Kepler problem in celestial mechanics. They are related to the usual cartesian coordinates (x, y, z) of Euclidean three-space by

$$x = \sinh \chi \sin \theta \cos \phi,$$

$$y = \sinh \chi \sin \theta \sin \phi,$$

$$z = \cosh \chi \cos \theta.$$

Restrict your attention to the plane y = 0 and answer the following questions.

- (a) What is the coordinate transformation matrix $\partial x^{\mu}/\partial x^{\nu'}$ relating (x, z) to (χ, θ) ?
- (b) What does the line element ds^2 look like in prolate spheroidal coordinates?
- **8.** Verify (2.78): for the exterior derivative of a product of a p-form ω and a q-form η , we have

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge (d\eta). \tag{2.102}$$

- **9.** In Euclidean three-space, suppose $*F = q \sin \theta \, d\theta \wedge d\phi$.
 - (a) Evaluate d * F = *J.
 - **(b)** What is the two-form F equal to?
 - (c) What are the electric and magnetic fields equal to for this solution?
 - (d) Evaluate $\int_V d*F$, where V is a ball of radius R in Euclidean three space.

10. Consider Maxwell's equations, dF = 0, d*F = *J, in 2-dimensional spacetime. Explain why one of the two sets of equations can be discarded. Show that the electromagnetic field can be expressed in terms of a scalar field. Write out the field equations for this scalar field in component form.

- 11. There are a lot of motivational words attached here to what is a very simple problem; don't get too distracted. In ordinary electromagnetism with point particles, the part of the action which represents the coupling of the gauge-potential one-form $A^{(1)}$ to a charged particle can be written $S = \int_{\gamma} A^{(1)}$, where γ is the particle worldline. (The superscript on $A^{(1)}$ is just to remind you that it is a one-form.) For this problem you will consider a theory related to ordinary electromagnetism, but this time in 11 spacetime dimensions, with a three-form gauge potential $A^{(3)}$ and four-form field strength $F^{(4)} = dA^{(3)}$. Note that the field strength is invariant under a gauge transformation $A^{(3)} \to A^{(3)} + d\lambda^{(2)}$ for any two-form $\lambda^{(2)}$.
 - (a) What would be the number of spatial dimensions of an object to which this gauge field would naturally couple (for example, ordinary E+M couples to zero-dimensional objects—point particles)?
 - (b) The electric charge of an ordinary electron is given by the integral of the dual of the two-form gauge field strength over a two-sphere surrounding the particle. How would you define the "charge" of the object to which $A^{(3)}$ couples? Argue that it is conserved if $d * F^{(4)} = 0$.
 - (c) Imagine there is a "dual gauge potential" \widetilde{A} that satisfies $d(\widetilde{A}) = *F^{(4)}$. To what dimensionality object does it naturally couple?
 - (d) The action for the gauge field itself (as opposed to its coupling to other things) will be an integral over the entire 11-dimensional spacetime. What are the terms that would be allowed in such an action that are invariant under "local" gauge transformations, for instance, gauge transformations specified by a two-form $\lambda^{(2)}$ that vanishes at infinity? Restrict yourself to terms of first, second, or third order in $A^{(3)}$ and its first derivatives (no second derivatives, no higher-order terms). You may use the exterior derivative, wedge product, and Hodge dual, but not any explicit appearance of the metric.

More background: "Supersymmetry" is a hypothetical symmetry relating bosons (particles with integral spin) and fermions (particles with spin $\frac{1}{2}$, $\frac{3}{2}$, etc.). An interesting feature is that supersymmetric theories are only well-defined in 11 dimensions or less—in larger numbers of dimensions, supersymmetry would require the existence of particles with spins greater than 2, which cannot be consistently quantized. Eleven-dimensional supersymmetry is a unique theory, which naturally includes a three-form gauge potential (not to mention gravity). Recent work has shown that it also includes the various higher-dimensional objects alluded to in this problem (although we've cut some corners here). This theory turns out to be a well-defined limit of something called M-theory, which has as other limits various 10-dimensional superstring theories.