§

On a Remannian manifold (M, g) , a vector field U is called a Killing vector field if it is infinitesimally an isometry , namely $\frac{d}{dt}\Big|_{t=0} \varphi_t^* g = 0$

Where φ_t is the one-paremeter family of diffeomorphism generate by U

- (a) For a Killing vector field U , show that $g(\nabla_X U, Y) + g(\nabla_Y U, X) = 0$ for any two vector fields X,Y
- (b) Suppose that U is a Killing vector field , and γ is a geodesic \circ Prove that

 $U|_{\gamma}$ is a Jacobi field

Proof: Compute:

$$\mathcal{R}(\gamma',\xi)\gamma' = (\nabla_{\gamma'}(\nabla\xi))\gamma' = \nabla_{\gamma'}\nabla_{\gamma'}\xi - \nabla_{\nabla_{\gamma'}\gamma'}\xi = \frac{D^2\xi}{dt^2},$$

using that $\nabla_{\gamma'}\gamma' = \mathbf{0}$.