- § 2019 年台大博士班
- 1. Consider the orthogonal group : $O(n) = \{g \in GL(n; R) : g^{-1} = g^T\}$ Show that O(n) is a dfferentiable manifold , and determine its dimension \circ
- 2. On R^3 , consider the following metric $ds^2 = dx^2 + dy^2 + (dz + \sin z dx + \cos z dy)^2$
 - (a) Calculate the Riemann curvatre tensor of ds^2
 - (b) Denote the 1-form $dz + \sin z dx + \cos z dy$ by $\alpha \circ$ Can you find a regular surface Σ passing through the origin , and

 $T_p \Sigma \subset \ker(\alpha \mid_p)$ for every $p \in \Sigma$? Justify your answer \circ

(c) Same question as (b) for the 1-form $\beta = dz + zdx$

Can you find a regular surface Σ passing the origin , and $T_p \Sigma \subset \ker(\beta|_p)$

for every $p \in \Sigma$? Justify your answer \circ

3. On a Remannian manifold (M, g) , a vector field U is called a Killing vector field if it is infinitesimally an isometry, namely $\frac{d}{dt}\Big|_{t=0} \varphi_t^* g = 0$

Where φ_t is the one-paremeter family of diffeomorphism generate by U

- (a) For a Killing vector field U , show that $g(\nabla_X U, Y) + g(\nabla_Y U, X) = 0$ for any two vector fields X,Y
- (b) Suppose that U is a Killing vector field , and γ is a geodesic \circ Prove that

 $U|_{\gamma}$ is a Jacobi field

- 4. Let (M, g) be a connected Riemannian manifold, with $\dim M \ge 3$
 - (a) State the second Bianchi identity for the Riemann crvature
 - (b) Sippose that its Ricci curvature is proportional to the metric tensor \circ Namely, thre exists $f \in C^{\infty}(M; R)$ such that $\operatorname{Ric}(X, Y) = f(p)g(X, Y)$ for any $p \in M$,

and $X, Y \in T_p M$ • Prove that f must be a contstant function •

Hint : In terms of coordinate , the condition reads $R_{ilj}^l = fg_{ij}$ °

Taking covariant derivative in ∂_k gives $R_{ilj;k}^l = (\partial_k f)g_{ij}$

- 5. Let Σ be a closed (compact without boundary) \cdot oriented surface \circ
 - (a) Does there always exist a smooth map $F: \Sigma \to S^2$ such that F is essential (i.e. F is not homotopic to a constant map)? Justify your answer \circ
 - (b) Consider the same question , but replacing the codomain S^2 by the 2-torus T^2
- 1. Let U be a connected open subset of R^2 \circ
 - Let f be a smooth function on U and let the metric $ds^2 = e^{2f} (dx^2 + dy^2)$
 - (a) Determine the scalar curvature R of the metric
 - (b) Use the resulting formula above to find the scalar curvature of the upper half plane with the metric $ds^2 = \frac{1}{v^2}(dx^2 + dy^2)$
- 2. Let M be a n-dimensional Riemannian manifold
 - (a) Let $\{e_1, e_2, ..., e_n\}$ be a local frame for the tangent bundle \circ Let ∇ be the Levi-Civita connection \circ Determine constants $\{a,b,c\}$, so that

$$g(\nabla_{e_i}e_j, e_k) = ag([e_i, e_j], e_k) + bg([e_j, e_k], e_i) + cg([e_k, e_i], e_j)$$

(b) Show that there exists a local orthonormal fram field with $[e_i, e_j] = 0$ for all

i,j if and only if the curvature tensor vanishes identically $\,\circ\,$

3. A derivation of C[∞](Rⁿ) based at a point P is a linear map L from C[∞](Rⁿ) to R satisfying the Leibnitz rule L(fg)=f(P)L(g)+L(f)g(P) ∘
Let L be a derivation of C[∞](Rⁿ) based at P=0 , and let x = (x¹,...,xⁿ) be the coordinate functions on Rⁿ ∘
Show there exist real constants a₁,...,a_n so that

2c

$$L(f) = a_1 \frac{\partial f}{\partial x^1}(0) + \dots + a_n \frac{\partial f}{\partial x^n}(0)$$

4. Consider (R^2, g) to be the Riemannian manifold, with metric given by

$$g = (e^{-x} + y^2 e^x) dx^2 + xy e^{-\frac{x}{2}} dx dy + 10(x^4 + y^4 + 5) dy^2$$

- (a) Argue that this is a Riemannian metric
- (b) Is this a complete manifold ? Prove or give a reason why it would not be \circ

- Suppose that a Riemannian manifold has section curvatures of both +1 and 1 at a point p : Prove there exist a (2-dimensional) tangent plane at p that has zero sectional curvature •
- 6. Let $X = \{(x, y, z) \in \mathbb{R}^3 | x^3 + xyz + y^2 = 1\}$
 - (a) Show that X is a 2-manifold
 - (b) Consider the map $\pi: X \to R^2$ taking (x,y,z) to (x,y) Find all points of X at which π fails to be a local diffeomorphism