§ 2008 年
1． $\mathrm{C}=\left\{x^{2}+y^{2}-1=0=z\right\}$ is a circle 。
Can you find a smooth differential 1－form $\omega=\alpha d x+\beta d y+\gamma d z$ in $R^{3}-C$ ， which is closed but is not an exact differential ？
If not，prove such differential do not exist by deRham cohomology or any other method
If yes，$\omega=? d x+? d y+? d z$

2．B

$$
A=(1,1,1), \quad B=(1,-1,-1), \quad C=(-1,1,-1), \quad D=(-1,-1,1)
$$

$$
K=\overline{A B} \cup \overline{A C} \cup \overline{A D} \cup \overline{B C} \cup \overline{B D} \cup \overline{C D}, \quad X=\mathbb{R}^{3}-K
$$ Find the fundamental group $\pi_{1}(X)$ by vankampln＇s theorem or any other method．（25／100）

Let $d z^{2}=4\left(d x^{2}+d y^{2}\right) \div\left(1+x^{2}+y^{2}\right)^{2}$ be the viemannian metric pulled lack．by the stereo－ graphic popection．$\gamma=\{(t, 1-t) \mid 0 \leq t \leq 1\}$ is a_{1} segment from $p=(0,1)$ to $q=(1,0), \vec{\imath}=\frac{\partial}{\partial x}$ \＆$\vec{\jmath}=\frac{\partial}{\partial y}$ me basis vectors．$\vec{u}=\vec{\imath}+\bar{\jmath}$ is a vector at P, \vec{v} in the parallel translate of \vec{u} to q along $\gamma . \vec{\nu}=? \vec{\imath}+? \vec{\jmath} \quad$（25／100）

4．$z=\frac{x^{2}}{4}+y^{2}$ is an elliptic parabolid 。 $x-y+2 z=4$ intersects this paraboloid in a planar curve so its torsion $\tau \equiv 0$ 。 At the point $(2,0,1)$ ，is it correct that creature $K=\frac{37}{22} \sqrt{6}$ ？

If not， $\mathrm{K}=$ ？

