§ 2008年

1. C={ $x^2 + y^2 - 1 = 0 = z$ } is a circle \circ

Can you find a smooth differential 1-form $\omega = \alpha dx + \beta dy + \gamma dz$ in $R^3 - C$, which is closed but is not an exact differential ?

If not $\, \cdot \,$ prove such differential do not exist by deRham cohomology or any other method $\, \circ \,$

If yes , $\omega = ?dx + ?dy + ?dz$

2. B

$$A = (1, 1, 1), B = (1, +, +), C = (+, 1, +), D = (+, +, 1)$$

 $K = \overline{AB} \cup \overline{AC} \cup \overline{AD} \cup \overline{BC} \cup \overline{BD} \cup \overline{CD}, X = \mathbb{R}^{3} - K$
Find the fundamental group $\overline{T}_{1}(X)$ by van Kampen's
Theorem or any other method. $(2\frac{1}{100})$

Let
$$dz^2 = 4(dx^2 + dy^2) \div (1+x^2+y^2)^2$$
 be the
viemannian metric pulled back by the steven
graphic projection. $\gamma = \{(t, 1-t)\} \ o \le t \le 1\}$
is a segment from $P = (0, 1)$ to $g = (1, 0)$. $\overline{t} = \frac{3}{3x} \ \Re \ \overline{f} = \frac{3}{3y}$
are basis vectors. $\overline{u} = \overline{t} + \overline{f}$ is a vector at P , \overline{v} is the
parallel translate of \overline{u} to g along γ . $\overline{v} = \overline{t} + \overline{f} \ (24/100)$
3.

4.
$$z = \frac{x^2}{4} + y^2$$
 is an elliptic parabolid \circ
x-y+2z=4 intesects this paraboloid in a planar curve so its torsion $\tau \equiv 0 \circ$
At the point (2,0,1) , is it correct that crvature $K = \frac{37}{22}\sqrt{6}$?
If not , K=?