- § 2005 年 台大博士班考題
- 1. Let $U = \{(\theta, t) | t \ge 0\}$ be the upper half plane \circ

Can you find smooth maps $x(\theta, t)$ and $y(\theta, t)$ periodic in θ with period 2π form U to R^2 satisfying differential equations

$$\frac{\partial}{\partial t}(x,y) = \frac{\frac{\partial x}{\partial \theta} \frac{\partial^2 y}{\partial \theta^2} - \frac{\partial y}{\partial \theta} \frac{\partial^2 x}{\partial \theta^2}}{\left[\left(\frac{\partial x}{\partial \theta}\right)^2 + \left(\frac{\partial y}{\partial \theta}\right)^2\right]^{\frac{3}{2}}} \frac{\left(-\frac{\partial y}{\partial \theta}, \frac{\partial x}{\partial \theta}\right)}{\left[\left(\frac{\partial x}{\partial \theta}\right)^2 + \left(\frac{\partial y}{\partial \theta}\right)^2\right]^{\frac{1}{2}}} ?$$

If not , can you find such maps from a subset of U to R^2 ?

2. Let $\omega = dx \wedge dy + dy \wedge dz + dz \wedge dw$ is a differential 2-form in $R^4 = \{(x, t, z, w)\}$

Is ω a symplectic form ? Can you find 1-forms α and β so that $\omega = \alpha \wedge \beta$

3. Let $C = \{z = 0, x^2 + y^2 = 1\}$ be a circle in $R^3 \circ$

Can you find a differential 1-form α on $R^3 - C$ which is closed but not exact ? If yes , $\alpha = ?dx + ?dy + ?dz$

4. Can you find smooth maps x(u,v), y(u,v), z(u,v) from R^2 to R^3 , periodic in u with period 2π , which represents a complete surface with negative Gauss curvature in R^3 ?

If it is not compact , can you prove its total curvature $\frac{1}{2\pi} \iint \kappa dA$ is equal to its Euler characteristic χ ?