§ 2004 年 台大博士班考題

1. Let
$$X = \sum_{i=1,2} a_i(x_1, x_2) \frac{\partial}{\partial x^i}, Y = \sum_{i=1,2} b_i(x_1, x_2) \frac{\partial}{\partial x^i}$$
 be vector fields on $R^2 \circ$

- (a) Find a formula for the bracket [X,Y]
- (b) Let ω be a differential p-form on an n-dimensional differentiable manifold M , and d be the exterior derivative on M °
 Find the formula for dω by using local coordinates , and show that your answer is independent of the choice of coordinates °
- 2. Let M be a simply connected n-dimensional differentiable manifold \circ Let ω be differential 1-form \circ Suppose that ω is closed \cdot i.e. $d\omega = 0 \circ$ Show that ω is exact \cdot i.e. there exists a differentiable function f on M such that $df = \omega$
- 3. Let T be a topological torus \cdot i.e. diffeomorphic to $R^2/Z^2 \circ$ Let g be a Riemannian metric on T \cdot written as $g = a(x, y)dx^2 + 2b(x, y)dxdy + c(x, y)dy^2$ where (x,y) are the Euclidean coordinates on $R^2 \circ$ Suppose the Gaussian curvature $K(g) \le 0$ everywhere \circ Find all possible solutions of g \circ
- 4. Prove or disprove that the tangent bundle $T(S^2)$ of the 2-dimensional sphere S^2 is a topologically non-trivial vector bundle , i.e. $T(S^2)$ is not equivalent to the trivial bundle $R^2 \times S^2$ over S^2