§ Riemannian Geometry  Peter Petersen
Chapter 1 Riemannian Metrics
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Exercises

(1) On product manifolds M x N one has special product metrics g = gar+9n,
where gnr, gy are metrics on M, N respectively.
(a) Show that (R™,can) = (R,dt?) x --- x (R,dt?).
(b) Show that the flat square torus

T? =R?/7% = (Sl. (i)zdrﬁ) X (Sl. (i)2d92) .
T\ 27 T\ 27
(¢) Show that
F(61,65) = %(cos 61,sin 01, cos O, sin f5)
is a Riemannian embedding: 72 — R*.
(2) Suppose we have an isometric group action G on (M, g) such that the
quotient space M /G is a manifold and the quotient map a submersion.

Show that there is a unique Riemannian metric on the quotient making
the quotient map a Riemannian submersion.

(3) Construct paper models of the Riemannian manifolds (R?, dt* + a*t? d92) .
If @ = 1, this is of course the Euclidean plane, and when a < 1, they look
like cones. What do they look like when a > 17

(4) Suppose ¢ and 1 are positive on (0,00) and consider the Riemannian

submersion
((0,00) x 8% x ST, di? +¢2 (1) [(01)2 + (62)? + (0%)2] + ¥2()d6?)
1
((0,00) x 8%, de? + @2(B)[(0)? + (0°)%] + SHTEDS (0)?) -

Define f = ¢ and h = %% and assume that

f(0) > 0,
fe90) = o,



and

h(0) = 0,
W) = k
h(even) (0) — 0’

where k is a positive integer. Show that the above construction yields a
smooth metric on the vector bundle over S? with Euler number +k. Hint:
Away from the zero section this vector bundle is (0,00) x S%/Z;,, where
S3 /7y, is the quotient of $% by the cyclic group of order k acting on the
Hopf fiber. You should use the submersion description and then realize
this vector bundle as a submersion of S x R2. When k = 2, this becomes
the tangent bundle to $2. When k = 1, it looks like CP? — {point} .

(5) Let G be a compact Lie group
(a) Show that G admits a bi-invariant metric, i.e., both right and left

translations are isometries. Hint: Fix a left invariant metric gr, and
a volume form w = o' A --- A 0! where ¢° are left invariant 1-forms.
Then define g as the average over right translations:

1
g (v,w) = f_w /gL (DR, (v),DR, (w))w.

(b) Show that the inner automorphism Ady () = hrh™! is a Riemannian

isometry. Conclude that its differential at z = e denoted by the same
letters

Adp:g—g
is a linear isometry with respect to g.
Use this to show that the adjoint action

adU : g—9,

ady (X) = [U,X]
is skew-symmetric, i.e.,
g([U: X] :Y) =-9 (X [U: Y]) :

Hint: It is shown in the appendix that U — ady is the differential of
h — Adp,. (See also chapter 3).

(6) Let V be an n-dimensional vector space with a symmetric nondegenerate
bilinear form ¢ of index p.
(a) Show that there exists a basis e,...,e, such that g(e;,e;) = 0 if

i#£ 7, 9(e,e;)=—1ifi=1, .. pand g(e;,¢;)=1ifi=p+1,..,n.
Thus V is isometric to RP9.



(b) Show that for any v we have the expansion
9 v, Ba
v =
= —Z:gve1 e; + Z (v,€;)e;.
_p—|—]_

(¢) Let L:V — V be a linear operator. Show that
Z pirlo)s
(ev

(b) Show that the inner automorphism Ady () = hrh™! is a Riemannian
isometry. Conclude that its differential at z = e denoted by the same
letters

Adp:g—g

is a linear isometry with respect to g.

Chapter 2 Curvature
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Connections

The connection in Local Coordinates
Curvature

The Fundamental Curvature Equations
The Equations of Riemannian Geometry
Some Tensor Concepts

Further Study

Exercises

(1) Show that the connection on Euclidean space is the only affine connection

such that VX = 0 for all constant vector fields X.

(2) If F: M — M is a diffeomorphism, then the push-forward of a vector

field is defined as

(F.X)|p = DF (X|p-1(p)) -

Let F' be an isometry on (M, g).

(a) Show that F, (VxY) = Vg, xF.Y for all vector fields.

(b) If (M, g) = (R™, can) , then isometries are of the form F' (z) = Oz +b,
where O € O(n) and b € R™. Hint: Show that F' maps constant
vector fields to constant vector fields.

(3) Let G be a Lie group. Show that there is a unique affine connection such

that VX = 0 for all left invariant vector fields. Show that this connection
is torsion free iff the Lie algebra is Abelian.



(4) Show that if X is a vector field of constant length on a Riemannian man-
ifold, then V,X is always perpendicular to X.

(5) For r;my pE (ﬂf, q) and orthonormal basis ei,...,ey for T,M, show that
there is an orthonormal frame Ei,...,E, in a neighborhood of P such
that E; = e; and (VE;) |, = 0. Hint: Fix an orthonormal frame E; near
p € M with E; (p) = ¢;. If we define E; = agEj} where [ag (55')] € SO (n)

and a*f (p) = 5? , then this will yield the desired frame provided that the

D,, ! are appropriately prescribed.

(6) (Riemann) As in the previous problem, but now show that there are co-
ordinates z!,...,2" such that d; = e; and V8, = 0 at p. These conditions
imply that the metric coefficients satisfy g;; = d;; and Opg;; = 0 at p.
Such coordinates are called normal coordinates at p. Show that in normal
coordinates g viewed as a matrix function of x has the expansion

n
g = Zgijd:r:id:z:j
i,j=1

n
= Z drtdz’
i=1

+ Z R (:cid:cj — .’Bjd:l?{) (:ckd:c" — :::id:rk) +0 (|:1:|2) ,
i<j k<l
where R;jr = g (R(0;,0;) Ok, 0;) (p) - In dimension 2 this formula reduces
to
g = dz? + dy2 + Ri212 (zdy — yd:r:)2 +o (:1:2 + ’92)
= dz? + dy? — sec (p) (zdy — ydm)2 +o (:r2 + y2) .

(7) Let M be an n-dimensional submanifold of R"*™ with the induced metric
and assume that we have a local coordinate system given by a parame-
trization x* (’ul, ...,u”) , s = 1,...,n + m. Show that in these coordinates
we have:

(a)

(b)

n+m
s 82338

1_11: 1 = —_—.
ark Sz::l ouk Outoul

(¢) Rijr depends only on the first and second partials of z°.

(8) Show that Hessf = Vdf.



(9) Let r be a distance function and S (X) = Vxd, the (1,1) version of the
Hessian. Show that
Laf's = Var S?
Ls,S+S* = —Ra,.

How do you reconcile this with what happens for the fundamental equa-
tions for the (0, 2)-version of the Hessian?

(10) Let (M,g) be oriented and define the Riemannian volume form dvol as

follows:
dvol (vq,...,v,) =det (g (vi,€5)),
where e,..., e, is a positively oriented orthonormal basis for 7}, M.
(a) Show that if vy,..., v, is positively oriented, then

dvol (vy,...,v,) = y/det (g (v, vj)).

(b) Show that the volume form is parallel.
(c) Show that in positively oriented coordinates,

dvol = y/det (gij)dz" A --- A dz".
(d) If X is a vector field, show that
Lxdvol = div (X) dvol.

(e) Conclude that the Laplacian has the formula

1

“ det (gi;) k( et (9ij)g™ Oru

Given that the coordinates are normal at p we get as in Euclidean
space that

Af(p) =) 0.
=1

(11) Let (M, g) be a oriented Riemannian manifold with volume form dvol as
above.

(a) If f has compact support, then

Af - dvol = 0.
M

(b) Show that
div(f-X)=9(Vf,X)+ f-divX.
(c) Show that
A(fr-f2) =(Af) - f2+29(V1, Vo) + fi- (Af2).



(d) Establish the integration by parts formula for functions with compact
support:

f1-Afs-dvol = —/ g(Vfi1,Vfa2)-dvol

M M

(e) Conclude that if f is sub- or superharmonic (i.e., Af > 0or Af <0)
then f is constant. (Hint: first show Af = 0; then use integration by
parts on f-Af.) This result is known as the weak mazrimum principle.
More generally, one can show that any subharmonic (respectively
superharmonic) function that has a global maximum (respectively
minimum) must be constant. For this one does not need f to have
compact support. This result is usually referred to as the strong
maximum principle.

(12) A vector field and its corresponding flow is said to be incompressible if
divX = 0.
(a) Show that X is incompressible iff the local flows it generates are
volume preserving (i.e., leave the Riemannian volume form invariant).
(b) Let X be a unit vector field X on R?. Show that VX = 0 if X is
incompressible.

(c) Find a unit vector field X on R?® that is incompressible but where
VX #0.

(13) Let X be a unit vector field on (M, g) such that VxX = 0.

(a) Show that X is locally the gradient of a distance function iff the
orthogonal distribution is integrable.

(b) Show that X is the gradient of a distance function in a neighborhood
of p € M iff the orthogonal distribution has an integral submanifold
through p. Hint: It might help to show that Lx6x = 0.

(¢) Find X with the given conditions so that it is not a gradient field.
Hint: Consider S°.

(14) Given an orthonormal frame FEi,...,E, on (M,g), define the structure
constants cfj by [Ei, E;] = C%-Ek. Then define the I's and Rs by

T

R(E;,E;)E, = RiE

Ve.E; = T}E,

and compute them in terms of the ¢s. Notice that on Lie groups with left-
invariant metrics the structure constants can be assumed to be constant.
In this case, computations simplify considerably.



(15) There is yet another effective method for computing the connection and
curvatures, namely, the Cartan formalism. Let (M, g) be a Riemannian

manifold. Given a frame F.,..., F,. the connection can be written
VEQ' = ngJ?
where w’ are 1-forms. Thus,

i

V.E; = w! (v) Ej.

Suppose now that the frame is orthonormal and let w' be the dual coframe,
ie., w' (Ej) = &;. Show that the connection forms satisfy

i i
dw' = WA w;.

These two equations can, conversely, be used to compute the connection
forms given the orthonormal frame. Therefore, if the metric is given by
declaring a certain frame to be orthonormal, then this method can be very
effective in computing the connection.

If we think of [wf: } as a matrix, then it represents a 1-form with values
in the skew-symmetric n X n matrices, or in other words, with values in
the Lie algebra so (n) for O (n).

The curvature forms Qg are 2-forms with values in so (n). They are
defined as
R(-,-)E; =QE;.
Show that they satisfy

dwf:wf/\wi—kﬂg.

When reducing to Riemannian metrics on surfaces we obtain for an

orthonormal frame E1, F» with coframe w', w?

do' = WEA w%,
do?* = -t /\w%,
doy = 0

Q) = sec-dvol.

(16) Show that a Riemannian manifold with parallel Ricci tensor has constant
scalar curvature. In chapter 3 it will be shown that the converse is not
true, and also that a metric with parallel curvature tensor doesn’t have
to be Einstein.



(17)

(19)

Show that if R is the (1, 3)-curvature tensor and Ric the (0, 2)-Ricci tensor,
then

(divR) (X,Y, Z) = (VxRic) (Y, Z) — (VyRic) (X, Z).

Conclude that divR = 0 if VRic = 0. Then show that divR = 0 iff the
(1, 1) Ricci tensor satisfies:

(VxRic) (Y) = (VyRic) (X) for all X,Y.

Let G be a Lie group with a bi-invariant metric. Using left-invariant fields
establish the following formulas. Hint: First go back to the exercises to
chapter 1 and take a peek at chapter 3 where some of these things are
proved.

(a) VxV = L[X,Y].

(b) R(X,Y)Z = L[Z,[X,Y].

(¢) g(R(X,Y)Z, W) =—1(9([X,Y].[Z W])). Conclude that the sec-

tional curvatures are nonnegative.

(d) Show that the curvature operator is also nonnegative by showing
that:

g (9{ (Ek:Xa‘AYi) ; (Zk:XiAYz')) = i Zk:[Xi:Yi]

(e) Show that Ric (X, X) = 0iff X commutes with all other left-invariant
vector fields. Thus G has positive Ricci curvature if the center of G
is discrete.

(f) Consider the linear map A?g — [g,g] that sends X AY to [X,Y].
Show that the sectional curvature is positive iff this map is an isomor-
phism. Conclude that this can only happen if n = 3 and g = su (2) .

2

It is illustrative to use the Cartan formalism in the above problem and
compute all quantities in terms of the structure constants for the Lie
algebra. Given that the metric is bi-invariant, it follows that with respect
to an orthonormal basis they satisfy

The first equality is skew-symmetry of the Lie bracket, and the second is

bi-invariance of the metric.

(20) Suppose we have two Riemannian manifolds (M, gys) and (N, gn). Then

the product has a natural product metric (M x N, gy + gn) - Let X be
a vector field on M and Y one on N, show that if we regard these as
vector fields on M x N, then VxY = 0. Conclude that sec (X,Y) = 0.
This means that product metrics always have many curvatures that are
Zero.



(21) Suppose we have two distributions E and F on (M, g), that are orthogonal
complements of each other in T M. In addition, assume that the distribu-
tions are parallel i.e., if two vector fields X and Y are tangent to, say, F,
then VxY is also tangent to E.

(a) Show that the distributions are integrable.

(b) Show that around any point in M there is a product neighborhood
U = Vg x Vg such that (U,g) = (Vg X Vg, gl + g|r), where g|g
and g|r are the restrictions of g to the two distributions. In other
words, M is locally a product metric.

(22) Let X be a parallel vector field on (M, g). Show that X has constant
length. Show that X generates parallel distributions, one that contains X
and the other that is the orthogonal complement to X. Conclude that lo-
cally the metric is a product with an interval (U, g) = (V x I, g|rv + dt?) .

(23) For 3-dimensional manifolds, show that if the curvature operator in diag-
onal form looks like

a 0 0
0 B 0
0 0 ~

then the Ricci curvature has a diagonal form like

a+B 0 0
0 B+~ 0
0 0 a+y

Moreover, the numbers «, 3,y must be sectional curvatures.

(24) The Finstein tensor on a Riemannian manifold is defined as

scal
G=Ric—%-f.

Show that G = 0 in dimension 2 and that divG = 0 in higher dimensions.
This tensor is supposed to measure the mass/energy distribution. The
fact that it is divergence free tells us that energy and momentum are
conserved. In a vacuum, one therefore imagines that G = 0. Show that
this happens in dimensions > 2 iff the metric is Ricci flat.

(25) This exercise will give you a way of finding the curvature tensor from the
sectional curvatures. Using the Bianchi identity show that
82
—6R(X,Y,Z, W) = pyey {R(X +sZ.Y +tW.,Y +tW, X + s5Z)
8 s=t=0

—R(X +sW,Y +tZ,Y +tZ,X + sW)}.

(26) Using polarization show that the norm of the curvature operator on A2 T,M
is bounded by
19R],] < (n) sec],
for some constant ¢ (n) depending on dimension, and where [sec|,, denotes
the largest absolute value for any sectional curvature of a plane in T,,M.



(31) Recall that _complex manifolds have complex tangent s_péces.' Thus we

can multiply vectors by /—1. As a generalization of this we can define an
almost complex structure. This is a (1, 1)-tensor J such that J? = —1I.
Show that the Nijenhuis tensor:

N(X,Y) = [J(X),J (V)] = J ([T (X),Y]) = J (X, (V)]) - [X.Y]

is indeed a tensor. If J comes from a complex structure then N = 0, con-
versely Newlander&Nirenberg have shown that J comes from a complex
structure if N = 0.

A Hermitian structure on a Riemannian manifold (M, g) is an almost
complex structure J such that

9(7(X), T (V) = g (X, 7).
The Kdahler form of a Hermitian structure is
w(X,Y)=g(J(X),Y).
Show that w is a 2-form. Show that dw = 0 iff V.J = 0. If the K&hler form

is closed, then we call the metric a Kahler metric.

Chapter 3 Examples

No u bk wnN R

Computational Simplifications
Warped Products

Hyperbolic Space

Metrics on Lie Groups
Riemannian Submersions
Further Study

Exercises

(1) Show that the Schwarzschild metric doesn’t have parallel curvature tensor.

10

(2) Show that the Berger spheres (¢ # 1) do not have parallel curvature tensor.

(3) Show that CP? has pa:rallel curvature tensor.



(4) The Heisenberg group with its Lie algebra is

1l a ¢
G = 0 1 b |:abceRy,
| 0 0 1 |
[0 =z 2z ]
g = 0 0 y|:abcelR
| 0 0 0 |
A basis for the Lie algebra is:
01 0 0 0 0 0 0 1
X=1000)|,Y=]10011],Z=]0 0 0
0 0 O 0O 0 0 0O 0 0

(a) Show that the only nonzero brackets are
[XY]=-[V,X]=Z

Now introduce a left-invariant metric on G such that X,Y, Z form
an orthonormal frame.

(b) Show that the Ricci tensor has both negative and positive eigenvalues.
(c) Show that the scalar curvature is constant.
(d) Show that the Ricci tensor is not parallel.

(5) Let g = e*¥g be a metric conformally (;quiva]ent. to g. Show that
(a)
VxY = VxY + ((Dx¥)Y + (Dy¢) X — g (X,Y) Vi)
(b) If X, Y are orthonormal with respect to g, then
e?Ysec (X,Y) = sec(X,Y)—Hessy (X, X) — Hesst (V,Y)
— |[VeI* + (Dxv)” + (Dy¥)®

(6) (a) Show that there is a family of Ricci flat metrics on T'S? of the form
dr® + o*(r) (¥*(r)(0')* + (0°)* + (0%)?)

(1'9 = wa

R R
e (0) = ki.(0)=0,
¥ (0) = 0,¢9(0)=2.

(b) Show that ¢ (r) ~ 7, ¢(r) ~ 1, $(r) ~ 2kr=° as r — oo. Conclude
that all curvatures are of order =% as r — oo and that the metric
looks like (0, 00) x RP? = (0, 00) x SO (3) at infinity. Moreover, show
that scaling one of these metrics corresponds to changing k. Thus, we
really have only one Ricci flat metric; it is called the Eguchi-Hanson
metric.



(7) For the general metric
dr? + 2(r) (V*(r)(0")? + (02)? + (o%)?)

show that the (1,1)-tensor, which in the orthonormal frame looks like

0 -1 0 0
1 0 0 0
0 0 0 —-11]"
0 0 1 0

yields a Hermitian structure.

(a) Show that this structure is Kéhler, i.e., parallel, iff ¢ = .

(b) Find the scalar curvature for such metrics.

(c) Show that there are scalar flat metrics on all the 2-dimensional vector
bundles over S%. The one on T'S? is the Eguchi-Hanson metric, and
the one on S2 x R? is the Schwarzschild metric.

(8) Show that 7 (RP”_I) admits rotationally symmetric metrics
dr? + o? (r)ds>_,
such that ¢ (r) = r for > 1 and the Ricci curvatures are nonpositive.
Thus, the Euclidean metric can be topologically perturbed to have non-
positive Ricci curvature. It is not possible to perturb the Euclidean metric
in this way to have nonnegative scalar curvature or nonpositive sectional

curvature. Try to convince yourself of that by looking at rotationally
symmetric metrics on R" and 7 (RP"~1).

(9) A Riemannian manifold (M, g) is said to be locally conformally flat if
every p € M lies in a coordinate neighborhood U such that

9=¢" ((‘CL"?I)2 +oo (d:r”)z) :

(a) Show that the space forms S} are locally conformally flat.

(b) With some help from the literature, show that any 2-dimensional
Riemannian manifold is locally conformally flat (isothermal coordi-
nates). In fact, any metric on a closed surface is conformal to a metric
of constant curvature. This is called the uniformization theorem.

(¢) Show that if an Einstein metric is locally conformally flat, then it has
constant curvature.

(10) We say that (M, g) admits orthogonal coordinates around p € M if we
have coordinates on some neighborhood of p, where

gij = 0 for i # j,

i.e., the coordinate vector fields are perpendicular. Show that such coor-
dinates always exist in dimension 2, while they may not exist in dimension
> 3. To find a counterexample, you may want to show that in such coor-
dinates the curvatures Rij r = 0 if all indices are distinct. What about 3
dimensions?

12
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Chapter 4 Hypersurfaces

1. The Gauss Map

2. Existence of Hypersurfaces
3. The Gauss-Bonnet Theorem
4. Further Study
5

Exercises

(1) Consider the hypersurface given by the graph z"*! = f (z"), where f :
R — R is smooth. Show that the shape operator doesn’t necessarily vanish
but that the hypersurface is isometric to R"™.

(2) If X is a Killing field on an abstract surface (Mrz,g) show that the index
of any isolated zero is 1.

(3) Assume that we have a Riemannian immersion of an n-manifold into R"*1.
If n > 3, then show that it can’t have negative curvature. If n = 2 give
an example where it does have negative curvature.

(4) Let (M, g) be a closed Riemannian n-manifold, and suppose that there
is a Riemannian embedding into R”*!. Show that there must be a point
p € M where the curvature operator ‘R : AQTer — A2TPM' is positive.
(Hint: Consider f (z) = |z|* and restrict it to M, then check what happens
at a maximum.)

(5) Suppose (M, g) is immersed as a hypersurface in R**!, with shape oper-
ator S.
a) Using the Codazzi-Mainardi equations, show that
(a) g q ,

divS = d (trS).

(b) Show that if S = f () - I for some function f, then f must be a
constant and the hypersurface must have constant curvature.
(c) Show that S = A - Ric iff the metric has constant curvature.

(6) Let g be a metric on S? with curvature < 1. Use the Gauss-Bonnet formula
to show that vol (52, g) > volS? (1) = 47.
Show that such a result cannot hold on S by considering the Berger
metrics.

(7) Assume that we have an orientable Riemannian manifold with nonzero
Euler characteristic and || < 1. Find a lower bound for vol (M, g) . The
one sided curvature bound that we used on surfaces does not suffice in
higher dimensions, as one-sided curvature bounds do not necessarily imply
one sided bounds on the Chern-Gauss-Bonnet integrand.
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(8) Show that in even dimensions, orientable manifolds with positive (or non-
negative) curvature operator have positive (nonnegative) Euler character-
istic. Conclude that if in addition, such manifolds have bounded curvature
operator, then they have volume bounded from below. What happens
when the curvature operator is nonpositive or negative?

(9) In dimension 4 show, using the exercises from chapter 3, that
2
1 2 . scal 1 / 2 9
— R|” — |Ric — — = — tr (A —2BB* +C7).
871'2 /J\\'I (l | ‘ e 4 g ) 8?T2 M r( )

It was shown by Allendoerfer and Weil that in dimension 4

“ 1 5 . scal |2

You can try to prove this using the above definition of K. If the metric is
Einstein, show that

1
M) = — [ tr(A*-2BB* +(C?

B L / |IfV+|2 n ‘W’_|2 n scal?
- 871'2 M 24 ’

Chapter 5 Geodesics and Distance
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Further Study
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(1) Assume that (M, g) has the property that all geodesics exist for a fixed
time £ > 0. Show that (M, g) is geodesically complete.

(2) A Riemannian manifold is said to be homogeneous if the isometry group
acts transitively. Show that homogeneous manifolds are geodesically com-
plete.
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(3) Assume that we have coordinates in a Riemannian manifold so that ¢;; =
d1;. Show that z! is a distance function.

(4) Let 7 be a geodesic in a Riemannian manifold (M, g). Let ¢’ be another
Riemannian metric on M with the properties: ¢’ (%,%) = ¢(%,7) and
g (X,7) =0 iff g(X,4) = 0. Show that v is also a geodesic with respect
to ¢'.

(5) Show that if we have a vector field X on a Riemannian manifold (M, g)
that vanishes at p € M, then for any tensor 7' we have LxT = V xT at p.
Conclude that the Hessian of a function is independent of the metric at a
critical point. Can you find an interpretation of LxT at p?

(6) Show that any Riemannian manifold (M, ¢g) admits a conformal change
(ﬂf, AQQ) , where A : M — (0,00), such that (Mr, /\29) is complete.

(7) On an open subset U C R™ we have the induced distance from the Rie-
mannian metric, and also the induced distance from R". Show that the
two can agree even if U isn’t convex.

(8) Let N C (M,g) be a submanifold. Let V¥ denote the connection on N
that comes from the metric induced by g. Define the second fundamental
form of N in M by

II(X,Y)=VYY —-VyxY

(a) Show that II(X,Y) is symmetric and hence tensorial in X and Y.
(b) Show that II (X,Y") is always normal to N.

(c¢) Show that II =0 on N iff N is totally geodesic.

(d) If RV is the curvature tensor for N, then

J(RX.Y)Z,W) = g(RV(X.Y)Z,W)
—g (1(Y, 2),11(X, W) + g (II(X, Z), I (Y, W)).

(9) Let f: (M, g) — R be a smooth function on a Riemannian manifold.
(a) If v : (a,b) — M is a geodesic, compute the first and second deriva-
tives of f o-y.
(b) Use this to show that at a local maximum (or minimum) for f the
gradient is zero and the Hessian nonpositive (or nonnegative).
(c) Show that f has everywhere nonnegative Hessian iff f o v is convex
for all geodesics v in (M, g).

(10) Let N C M be a submanifold of a Riemannian manifold (M,g).
(a) The distance from N to z € M is defined as

d(z,N)=inf{d(z,p):p€ N}.

A unit speed curve o : [a,b] — M with o(a) € N,o (b) = =, and
¢(c) =d(z,N) is called a segment from = to N. Show that o is also

a segment from N to any o (t), ¢ < b. Show that ¢ (a) is perpendicular
to N.
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(b) Show that if N is a closed subspace of M and (M, g) is complete,
then any point in M can be joined to N by a segment.

(c) Show that in general there is an open neighborhood of N in M where
all points are joined to N by segments.

(d) Show that d (-, V) is smooth on a neighborhood of N and that the in-
tegral curves for its gradient are the geodesics that are perpendicular
to N.

(11) Compute the cut locus on a square torus R?/Z2.

(12) Compute the cut locus on a sphere and real projective space with the
constant curvature metrics.

(13) In a metric space (X, d) one can measure the length of continuous curves

v : [a,b] — X by

£() =sup{3d(y(t),y(tin)) sa=t1 Sta - Sty St=b}.

(a) Show that a curve has finite length iff it is absolutely continuous.
Hint: Use the characterization that v : [a,b] — X is absolutely
continuous if and only if for each € > 0 there is a § > 0 so that

Y od(v(s;),v(six1)) < e provided > |s; — 81| < 4.

(b) Show that this definition gives back our previous definition for smooth
curves on Riemannian manifolds.

(¢c) Let v : |a,b] — M be an absolutely continuous curve whose length
is d(y(a),v(b)). Show that v = o o ¢ for some segment o and
reparametrization .

(14) Show that in a Riemannian manifold,
d (exp,, (tv) ,exp, (tw)) = |t| - |[v — w| + O (t%).
(15) Assume that we have coordinates x’ around a point p € (M,g) such

that z? (p) = 0 and gﬂ,;j:cj = z'. Show that these must be exponential
coordinates. Hint: Define

?":\/(:r:l)2+---+(x”)2

and show that it is a smooth distance function away from p, and that the
integral curves for the gradient are geodesics emanating from p.

(16) If Ny, Ny C M are totally geodesic submanifolds, show that each compo-
nent of Ny N Ny is a submanifold which is totally geodesic. Hint: The
potential tangent space at p € N; N Ny should be T}, N, N T, N>.

(17) Show that for a complete manifold the functional distance is the same as
the distance. What about incomplete manifolds?
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(18) Let v : [0,1] — M be a geodesic such that exp.  is regular at all ¢ (0),
for ¢ < 1. Show that v is a local minimum for the energy functional. Hint:
Show that the lift of v via exp.,(oy Is a minimizing geodesic in a suitable
metric.

(19) Show, using the exercises on Lie groups from chapters 1 and 2, that on a
Lie group G with a bi-invariant metric the geodesics through the identity
are exactly the homomorphisms R — G. Conclude that the Lie group
exponential map coincides with the exponential map generated by the
bi-invariant Riemannian metric. Hint: First show that homomorphisms
R — G are precisely the integral curves for left invariant vector fields
through e € G.

(20) Repeat the previous exercise assuming that the metric is a bi-invariant
semi-Riemannian metric. Show that the matrix group Gl,, (R) of invertible
n X n matrices admits a bi-invariant semi-Riemannian metric. Hint: for
X,Y € T1Gl, (R) define

g(X,Y)=—tr (XY).

(21) Construct a Riemannian metric on the tangent bundle to a Riemannian
manifold (M, g) such that 7 : M — M is a Riemannian submersion and
the metric restricted to the tangent spaces is the given Euclidean metric.

(22) For a Riemannian manifold (M,g) let M be the frame bundle of M.
This is a fiber bundle 7w : FM — M whose fiber over p € M consists of
orthonormal bases for T}, M. Find a Riemannian metric on F'M that makes
7 into a Riemannian submersion and such that the fibers are isometric to
O (n).

(23) Show that a Riemannian submersion is a submetry.

(24) (Hermann) Let f: (M,g) — (N, g) be a Riemannian submersion.

(a) Show that (N, g) is complete if (M, g) is complete.

(b) Show that f is a fibration if (M, g) is complete i.e., for every p € N
there is a neighborhood p € U such that f=! (U) is diffeomorphic to
U x f~ (p). Give a counterexample when (M, g) is not complete.

Chapter 6 Sectional Curvature Comparison |
The Connection Along Curves

Second Variation of Energy
Nonnegtive Sectional Curvature
Positive Curvature

Basic Comparison Estimates

More on Positive Curvature

Further Study

Exercises

O N O Uk WLWDNPRE
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(1) Show that in even dimensions the sphere and real projective space are the
only closed manifolds with constant positive curvature.

(2) Suppose we have a rotationally symmetric metric dr? + ¢? (r) df*. We
wish to understand parallel translation along a latitude, i.e., a curve with
r = a. To do this we construct a cone dr® + (¢ (a) + ¢ (a) (r — a))* d6?
that is tangent to this surface at the latitude r = a. In case the surface
really is a surface of revolution, this cone is a real cone that is tangent to
the surface along the latitude r = a.

(a) Show that in the standard coordinates (r,6) on these surfaces, the
covariant derivative Vy, is the same along the curve r = a. Conclude
that parallel translation is the same along this curve on these two
surfaces.

(b) Now take a piece of paper and try to figure out what parallel transla-
tions along a latitude on a cone looks like. If you unwrap the paper it
is flat; thus parallel translation is what it is in the plane. Now rewrap
the paper and observe that parallel translation along a latitude does
not necessarily generate a closed parallel field.

(¢) Show that in the above example the parallel field along r = a closes
up if ¢ (a) = 0.

(3) (Fermi-Walker transport) Related to parallel transport there is a more
obscure type of transport that is sometimes used in physics. Let ~ :
l[a,b] — M be a curve into a Riemannian manifold whose speed never
vanishes and

_
1
the unit tangent of v. We say that V is a Fermi-Walker field along ~ if
Vo= g(V,T)T—g(V,T)T

(T A T) (V).

(a) Show that given V (to) there is a unique Fermi-Walker field V" along
v whose value at tg is V (tg).

(b) Show that T is a Fermi-Walker field along .

(c) Show that if V, W are Fermi-Walker fields along -+, then g (V, W) is
constant along .

(d) If yis a geodgsi(lz, then Fermi-Walker fields are parallel.

(4) Let (M,g) be a complete n-manifold of constant curvature k. Select a
linear isometry L : T,M — T5S}}. When k < 0 show that

exp,, oL 1o cxpgl Sy —- M



(8)

(9)
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is a Riemannian covering map. When k£ > 0 show that
exp,, oL 'o cxpgl : Sy —{-p} - M

extends to a Riemannian covering map S; — M. (Hint: Use that the
differential of the exponential maps is controlled by the metric, which in
turn can be computed when the curvature is constant. You should also use
the conjugate radius ideas presented in connection with the Hadamard-
Cartan theorem.)

Let v: [0,1] — M be a geodesic. Show that €XP. (o) has a critical point at

t4 (0) iff there is a Jacobi field J along v such that J (0) = 0, J (0) # 0,

and J (t) = 0.

Let 7 (s,t) : [0,1]> — (M, g) be a variation such that R (%31, %}) =0

everywhere. Show that for each v € T’,(0,0)M, there is a parallel field
av _ av

V|0, 1]2 — T'M along 7, i.e., G- = 5 = 0 everywhere.

Using

Oy Oy\ Oy _ 03 Oy

s’ Ot ) Ou  0sOtdu  Otdsdu
show that the two skew-symmetry properties and Bianchi’s first identity
hold for the curvature tensor.

Let v be a geodesic and X a Killing field in a Riemannian manifold. Show
that the restriction of X to v is a Jacobi field.

Let v be a geodesic in a Riemannian manifold and J;,Jy Jacobi fields
along . Show that

g (j1,J2) —g (Jh JQ)

is constant. A special case is when Jo = 4.

(10) A Riemannian manifold is said to be k-point homogeneous if for all pairs

of points (p1,...,px) and (q1, ..., gx) with d (pi, p;) = d(gi, g;) there is an
isometry F with F (p;) = gi. When k = 1 we simply say that the space is
homogeneous.

(a) Show that a homogenous space has constant scalar curvature.
(b) Show that if £ > 2 and (M, g) is k-point homogeneous, then M is

also (k — 1)-point homogeneous.

(c) Show that if (M,g) is two-point homogeneous, then (M, g) is an
Einstein metric.

(d) Show that if (M, g) is three-point homogeneous, then (M, g) has con-
stant curvature.

(e) Classify all three-point homogeneous spaces. Hint: The only one that
isn’t simply connected is the real projective space.
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(11) Show that if G is an infinite Abelian é;rohp that is the subgroup of the

fundamental group of a manifold with constant curvature, then either the
manifold is flat or G is cyclic.

(12) Let M — N be a Riemannian k-fold covering map. Show, volM = k-volN.

(13) Starting with a geodesic on a two-dimensional space form, discuss how the

equidistant curves change as they move away from the original geodesic.

(14) Introduce polar coordinates (r,8) € (0,00) x S"~! on a neighborhood U

around a point p € (M, g). If (M, g) has sec > 0 (sec < 0), show that any

curve 7y (t) = (r(t), 6 (t)) is shorter (longer) in the metric g than in the
Euclidean metric on U.

(15) Around an orientable hypersurface H — (M, g) introduce the usual co-

ordinates (r,z) € R x H on some neighborhood U around H. On U we
have aside from the given metric g, also the radially flat metric dt? + go,
where gq is the restriction of g to H. If M has sec > 0 (sec < 0) and
v (t) = (r(t),z (t)) is a curve, where r > 0 and the shape operator is < 0
(>0) at z (t) for all t, show that ~ is shorter (longer) with respect to g
than with respect to the radially flat metric dt + go.

(16) (Frankel) Let M be an n-dimensional Riemannian manifold of positive

curvature and A, B two totally geodesic submanifolds. Show that A and
B must intersect if dimA + dimB > n — 1. Hint: assume that A and B
do not intersect. Then find a segment of shortest length from A to B.
Show that this segment is perpendicular to each submanifold. Then use
the dimension condition to find a parallel field along this geodesic that
is tangent to A and B at the endpoints to the segments. Finally use the
second variation formula to get a shorter curve from A to B.

(17) Let M be a complete n-dimensional Riemannian manifold and A C M a

compact submanifold. Without using Wilking’s connectedness principle

establish the following statements directly.

(a) Show that curves in Q4 4 (M) that are not stationary for the energy
functional can be deformed to shorter curves in {04 4 (M).

(b) Show that the stationary curves for the energy functional on Q4 4 (M)
consists of geodesics that are perpendicular to A at the end points.

(¢) TIf M has positive curvature, A C M is totally geodesic, and 2dimA >
dimM, then the stationary curves can be deformed to shorter curves
in Q44 (M).

(d) (Wilking) Conclude from c. that any curve v : [0, 1] — M that starts
and ends in A is homotopic through such curves to a curve in A, i.e.,
71 (M, A) is trivial.

(18) Generalize Preissmann’s theorem to show that any solvable subgroup of

the fundamental group must be cyclic.



(19)

(21)
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Let (M, g) be an oriented manifold of positive curvature and suppose we
have an isometry F' : M — M of finite order without fixed points. Show
that if dimM is even, then F must be orientation reversing, while if dimM
is odd, it must be orientation preserving. Weinstein has proven that this
holds even if we don’t assume that F' has finite order.

Use an analog of Cartan’s result on isometries of finite order in nonpositive
curvature to show that any closed manifold of constant curvature = 1 must
either be the standard sphere or have diameter < 7. Generalize this to
show that any closed manifold with sec > 1 is either simply connected
or has diameter < 7. In chapter 11 we shall show the stronger statement
that a closed manifold with sec > 1 and diameter > 7 must in fact be
homeomorphic to a sphere.

(The Index Form) Below we shall use the second variation formula to
prove several results established in chapter 5. If VW are vector fields
along a geodesic v : [0,1] — (M, g) , then the index form is the symmetric

bilinear form

LV, W)=I(V,W) = /: (g (V, W) —g(R(V,%)4, W)) dt.

In case the vector fields come from a proper variation of v this is equal
to the second variation of energy. Assume below that v : [0,1] — (M, g)
locally minimizes the energy functional. This implies that I (V,V) > 0
for all proper variations.

(a) If I(V,V) =0 for a proper variation, then V' is a Jacobi field. Hint:
Let W be any other variational field that also vanishes at the end
points and use that

0<I(V+eW,V+eW)=IT(V,V)+2I(V,W) + 2T (W, W)

for all small £ to show that I (V,W) = 0. Then use that this holds
for all W to show that V is a Jacobi field.

(b) Let V and J be variational fields along v such that V (0) = J (0) and

V(1) =J(1).If J is a Jacobi field show that
I(V,J)=1(J,J).

(¢) (The Index Lemma) Assume in addition that there are no Jacobi

fields along ~ that vanish at both end points. If V and J are as in b.
show that I (V,V') > I (J,J) with equality holding only if V' = .J on
[0,1] . Hint: Prove that if V' # J, then

0<I(V-JV-J)=IV,V)=I(]J).



(d) Assume that there is a nontrivial Jacobi field J that vanishes at
0 and 1, show that v : [0,1+¢] — M is not locally minimizing
for € > 0. Hint: For sufficiently small £ there is a Jacobi field
K :[1—e,1+¢] - TM such that K(1+¢) =0 and K(1—¢) =
J (1 —¢). Let V be the variational field such that V|jg1_¢ = J and
V|j1—¢,14+¢) = K. Finally extend J to be zero on [1,1 + ] . Now show
that

0 = I(JLJ)=I(J,J)=1;7°(J,J)+ I} (J,J)
> I, (L) + [T (K, K)=T1(V,V).
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