§ Isotropc 各向同性、均質的

Let Π be a 2-dim subspace of T_pM and let X_p, Y_p be two linearly independent elements of Π \circ

Then
$$K(\Pi) \coloneqq -\frac{R(X_p, Y_p, X_p, Y_p)}{\|X_p\|^2 \|Y_p\|^2 - \langle X_p, Y_p \rangle^2}$$
 is called the sectional curvature of $\Pi \circ$

If n=2 , $K = \frac{K_{1212}}{g}, g = g_{11}g_{22} - g_{12}^2$

A Riemannian manifold is called isotropic at a point $p \in M$ if its sectional curvature is a constant K_p for every section $\Pi \subset T_pM$ °

Moreover , it is called isotropic if it is isotropic at all points \circ

Theorem : every 2-dim manifold is trivially isotropic •

Its sectional curvature $K(p) := K_p$ is called the Gauss curvature \circ

習作 Show that every point of R^3 is isotropic for the metric $ds^2 = x^{-2}(dx^2 + dy^2 + dz^2)$

K=-1 , the Riemannian space is more than just isotropic , it is a space of constant curvature $\,^\circ$