§ Isotropc 各向同性，均質的
Let Π be a 2－dim subspace of $T_{p} M$ and let X_{p}, Y_{p} be two linearly independent elements of Π 。

Then $K(\Pi):=-\frac{R\left(X_{p}, Y_{p}, X_{p}, Y_{p}\right)}{\left\|X_{p}\right\|^{2}\left\|Y_{p}\right\|^{2}-\left\langle X_{p}, \mathrm{Y}_{p}\right\rangle^{2}}$ is called the sectional curvature of Π 。
If $\mathrm{n}=2, K=\frac{R_{1212}}{g}, g=g_{11} g_{22}-g_{12}^{2}$

A Riemannian manifold is called isotropic at a point $\mathrm{p} \in M$ if its sectional curvature is a constant K_{p} for every section $\Pi \subset T_{p} M$ 。

Moreover，it is called isotropic if it is isotropic at all points 。

Theorem ：
every 2－dim manifold is trivially isotropic。
Its sectional curvature $K(p):=\mathrm{K}_{p}$ is called the Gauss curvature 。

習作

Show that every point of R^{3} is isotropic for the metric
$d s^{2}=x^{-2}\left(d x^{2}+d y^{2}+d z^{2}\right)$
$\mathrm{K}=-1$ ，the Riemannian space is more than just isotropic，it is a space of constant curvature。

