- § Let (M, g) be a connected Riemannian manifold, with $\dim M \ge 3$
 - (a) State the second Bianchi identity for the Riemann cryature
 - (b) Suppose that its Ricci curvature is proportional to the metric tensor \circ Namely \circ thre exists $f \in C^{\infty}(M;R)$ such that $\mathrm{Ric}(X,Y)=\mathrm{f}(p)\mathrm{g}(X,Y)$ for any $p \in M$ \circ and $X,Y \in T_{p}M$ \circ

Prove that f must be a contstant function •

We are given $\mathrm{Ric}(X,Y)=\mathrm{f}(p)\mathrm{g}(X,Y)$, $\forall p\in M,X,Y\in T_{p}M$, where $f\in C^{\infty}(M,R)$

We want to prove that f is a constant function •

The second Bianchi idetity for the Riemannian curvature:

$$(\nabla_X Ric)(Y, Z) + \nabla_Y Ric(Z, X) + (\nabla_Z Ric)(X, Y) = 0$$

Since Ric=fg , we have $\nabla_W Ric(X,Y) = \nabla_W (fg(X,Y))$

Because the Levi-Civita connection is compatible with the metric ($\nabla g = 0$), we get:

$$\nabla_{\mathbf{w}} \operatorname{Ric}(\mathbf{X}, \mathbf{Y}) = (\nabla_{\mathbf{w}} f)(\mathbf{X}, \mathbf{Y})$$

Thus $\nabla_Z Ric(X,Y) = (\nabla_Z f)g(X,Y)$

Plugging $\nabla Ric = (\nabla f) \otimes g$ into the Bianchi identity gives:

$$(\nabla_Z f)g(X,Y) + (\nabla_X f)g(Y,Z) + (\nabla_Y f)g(Z,X) = 0$$

Fix a point $p \in M$ · Let z=X and Y be orthogonal to X , then

$$(\nabla_X f)g(X,Y) + (\nabla_X f)g(Y,X) + (\nabla_Y f)g(X,X) = 0$$

Since g(Y, X) = 0, this reduce to $(\nabla_Y f)g(X, X) = 0$

But $g(X,X) \neq 0$ for a non zero X , so $\nabla_Y f = 0$ for all $Y \perp X$

We can conclude that $\nabla f = 0$ at every point $p \in M$

Since ∇f =0 everywhere , this means the gradient of f vanishes globally \circ On a connected manifold , any smooth function with zero gradient must be constant \circ

Thus f=constant on M •

- 1. The condition Ric=fg means that the Ricci curvature looks the same in all directions at each point \cdot up to a scaling by f \circ
- 2. The Ricci tensor measures how volumes deviate from Euclidean volumes under the manifold's geometry If this deviation is uniformly proportional to the metric it suggests a very symmetric curvature structure •
- 3. The second Bianchi identity imposes strong compatibility conditions on how curvature can vary ∘ In dimensions ≥3, these conditions force the scaling factor f to be the same everywhere, reflecting global geometric rigidity ∘

§ Connection to Einstein manifolds

Our result shows that any manifold with Ricci curvature proportional to the metric is automatically an Einstein manifold , provided dim(M) \geq 3 \circ

- § Role in General Relativity
- The Einstein field equations (without matter) are:

$$\mathrm{Ric}-rac{1}{2}Rg+\Lambda g=0,$$

where R is the scalar curvature and Λ is the cosmological constant.

- If we assume $\mathrm{Ric}=fg$, then comparing with Einstein's equations shows that f must be constant—tying our purely geometric result directly to **physical constraints** on spacetime geometry.
- § Implications in Ricci flow and geometric analysis
- The Ricci flow evolves a metric g(t) according to:

$$\frac{\partial g}{\partial t} = -2\text{Ric.}$$

- A fixed point of the Ricci flow satisfies $\mathrm{Ric} = \lambda g$, i.e., it's an Einstein metric.
- Our result shows that steady-state solutions under certain curvature conditions must have constant proportionality, simplifying the study of long-time behavior of Ricci flows.
- This insight is essential in results like Perelman's proof of the Poincaré conjecture and the Geometrization conjecture.

The result is a beautiful example of how local curvature conditions combined with global topology (connectedness of M) can enforce global geometric properties °