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 THE FOUR-OR-MORE VERTEX THEOREM

 ROBERT OSSERMAN

 Department of Mathematics, Stanford University, Stanford, CA 94305

 The four-vertex theorem states that a smooth Jordan curve in the plane has at least four

 vertices. A vertex is a local maximum or minimum of the curvature. Thus, an ellipse has exactly

 four vertices, at the ends of the major and minor axes. This theorem is frequently proved, under

 the additional assumption that the curve is convex, in introductory differential geometry ([2], [5],

 [6], [7], [13], [16], [21]) as an early instance of a theorem requiring global rather than purely local

 arguments.

 The four-vertex theorem (Vierscheitelsatz, Theoreime des quatre sommets) has a long history,
 starting in 1909 with Mukhopadhaya [18], who stated and proved it for convex curves. There

 followed a succession of different proofs, generalizations, and analogies (see the References for a
 sample), including an interesting recent contribution due to Gluck [9], who proved a kind of

 converse. It is therefore somewhat surprising that the argument presented here seems not only to
 be new, but also to have a number of advantages over the usual proofs:

 1. It makes immediately obvious geometrically why the result should be true.
 2. It works not only for convex curves, but with only a little extra effort for arbitrary Jordan

 curves.

 3. It is a direct proof, rather than the usual argument by contradiction. One consequence is

 that curves with only four vertices are seen to be special in certain ways; a large class of curves
 (even restricting to the convex case) must have six or more vertices.

 The essence of the proof may be distilled in a single phrase: consider the circumscribed circle.

 In fact, one way to formulate the result would be the following.

 THEOREM 1. Let y be a smooth (C2) Jordan curve in the plane. Denote by C the circumscribed
 circle about y. Then

 1. y fn C contains at least 2 points;

 2. if y n C contains at least n points, then y has at least 2n vertices.

 One could in fact make the second statement more precise:

 THEOREM 1'. In the notation of Theorem 1, if R is the radius of C, and if y n C contains at least

 n points, then either a whole arc of y lies on C, or else y has at least n vertices where the curvature K

 satisfies K < 1/R, and at least n vertices where K > 1/R.

 We shall discuss at the end of this paper the question of the expected number of points on

 y n C. Note that an immediate corollary of Theorem 1 is that whenever y n C contains an
 infinite number of points (as it well may), y must have an infinite number of vertices.

 The proof of Theorem 1 depends on three elementary and general geometric lemmas, as well as

 one lemma particular to the problem: Lemma 4 below.

 LEMMA 1. Let E be a compact set in the plane containing at least two points. Then among all

 circles C with the property that the closed disk bounded by C includes E, there is a unique one of
 minimum radius R > 0.
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 THE FOUR-OR-MORE VERTEX THEOREM 333

 DEFINITION. The circle defined in Lemma 1 is called the circumscribed circle about E.

 LEMMA 2. If C is the circumscribed circle about E, then any arc of C greater than a semicircle
 must intersect E.

 Note. The proof of Lemma 2, as well as the uniqueness of C follow immediately from the
 observation that assuming the contrary, one could find a smaller circle enclosing E.

 LEMMA 3. Let a smooth oriented curve y have the same unit tangent at a point P as a positively

 oriented circle C of radius R. Let K be the curvature of y. Then if K(P) > 1/R, a neighborhood of P
 on y lies inside C, while if K(P) < 1/R, a neighborhood of P on y lies outside C.

 We now derive Theorem 1 from these lemmas. Let -y be a Jordan curve, C the circumscribed
 circle, and R the radius of C. The first statement in Theorem 1 follows immediately from Lemma

 2. To prove the second statement, let P1, . . . , Pn be points of -y n C. If these points are ordered
 cyclically along y, we obtain n arcs y ... . , yn of -y, each bounded by a pair of points on y n C.

 2~~~~~~~P

 Q3

 P~~~~~~~~~~P

 FIG. 1

 Assertion. Each of the arcs y, either lies on C, or else contains a point Q, such that the
 curvature K of -y satisfies

 (1) K(Q,)<

 Before proving this assertion, let us note why the theorem is an immediate consequence. First
 of all, we assume that -y and C both are positively oriented, so that the interior is to the left. Then
 at any point Pk of y n C, the two curves have the same orientation and -y lies locally inside (or
 on) C. It follows from Lemma 3 that

 (2) K(Pk) >

 Since (2) holds at each endpoint of -y,, it follows from (1) that K has a minimum at some interior
 point Q' of y,, and that

 (3) K(Q) < f

 We thus obtain n vertices satisfying (3). On the other hand, each arc Yk of -y between successive
 Qi contains at least one point Pk of -y n C. In view of (1) and (2), there is an interior point Pk' of
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 334 ROBERT OSSERMAN [May

 Y-y where K is a maximum, and

 (4) P0K(k) >7R.

 We thus get n more vertices, thereby proving Theorem 1', and hence Theorem 1. (We have
 ignored the possibility that one of the y, lies on C, in which case every point of y, is trivially a
 vertex.)

 It remains to prove the Assertion above. We formulate it as a separate lemma.

 LEMMA 4. Let y be a positively oriented Jordan curve, C the circumscribed circle and P1, P2

 points of y n C. Let y1 be the (positively oriented) arc of y from P1 to P2. Then either y1 coincides
 with the circular arc P1 P2 or else there is a point Q1 on C satisfying (1), where R is the radius of C.

 Proof. By Lemma 2 we may assume that the positively oriented arc of C from P1 to P2 is

 included in a closed semicircle; if not, by Lemma 2, there is a point P2' between P1 and P2 such
 that the arc of C from P1 to P2' does lie in a (closed) semicircle, and we may apply the argument

 below to the subarc y" of Yi from P1 to P2'. The corresponding point Q1 of y, satisfying (1) will
 also lie on Yi*

 For convenience of referral, assume that C is centered at the origin, and that P1, P2 lie on the

 same vertical line in the right half-plane, with P2 above P1 (Fig. 2).

 /P1 Q,

 FIG. 2

 There are two possibilities. Either 71 coincides with the circular arc P1 P2, or else there is some
 point Q on 71 that lies strictly inside C. Consider first the case where y is convex. If we translate

 the circle determined by P1, Q, P2 to the left, there will be a last moment at which it intersects Y,.
 Let C' be the corresponding position of the circle, and let Q1 be a point of the intersection

 Ci' In y. Since the radius R' of C' satisfies R' > R, and since Y, lies locally outside C' at Q1, it
 follows from Lemma 3 that

 1 1
 R' R

 This proves the lemma, and hence the theorem, for the case of convex curves.

 Precisely the same argument holds for general Jordan curves, with one additional caveat: we

This content downloaded from 140.109.104.235 on Wed, 27 May 2020 02:40:23 UTC
All use subject to https://about.jstor.org/terms



 1985] THE FOUR-OR-MORE VERTEX THEOREM 335

 must use the Jordan property to guarantee that -y1 has the same orientation as C' at Q1. (In fact,
 for non-Jordan curves that need not be the case, and the lemma, as well as the theorem, need not
 hold; see Fig. 3.)

 I PI

 / /
 //
 P1~~~~~~~~~~~~~~P

 FIG. 3 FIG. 4

 Under the assumption that y, has no self-intersections, the closed curve, consisting of Yi
 followed by the arc C1 of C going in the positive direction from P2 to P1, is a Jordan curve whose
 interior is a domain D included in the interior of C. Note that the positive orientation induced on

 yl as boundary of D coincides with its original orientation as part of -y, since at the points P1 and
 P2, both coincide with the positive orientation of C. Once again, there are two cases to consider.

 Either -Yl coincides with the arc of C from P1 to P2, or else Yi contains a point Q strictly inside
 C. In the latter case, we may choose Q to the right of the vertical line through P1 and P2. (See
 also Remark 1 following the proof.) Then the circle determined by P1QP2 has radius R' > R.

 Translating this circle to the left, we again find a circle C' containing a point Q, of -y1 such that
 all further translates of C' to the left fail to intersect Yl. (See Fig. 4.) It follows that the interiors of
 C and C' intersect in a domain A that is included in D. Thus, both -Yi and C' have the same
 orientation at Q1, and we may apply Lemma 2 as before to deduce

 K(QJ< 1 < 1 R'

 This proves Lemma 4 and Theorem 1 for arbitrary Jordan curves.

 REMARK 1. A slight modification of the argument above produces sharper quantitative results.
 Consider all circular arcs from P1 to P2 lying inside C. Let C" be the one farthest to the left
 intersecting -y1, and let Q" be a point of Yi n C". There are three cases, depending on whether
 Q" is to the right, to the left, or on the vertical line P1 P2. In the last case, the argument above
 shows that K(Q") < 0. In the other two cases, C" is a proper circle of radius R". If Q" is to the
 right of the line P1 P2, then again

 K(Q) R" R<
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 PI

 FIG. 5

 If Q" is the left, one has the stronger result that

 K(Q//) 1,,o R"I

 For this last, one notes that at Q", the positive orientation of Yi coincides with the negative
 orientation of C" (Fig. 5).

 RiEMARK 2. It might seem natural to carry out a basically equivalent "dual" approach, using
 inscribed, rather than circumscribed circles. On closer examination, however, the use of inscribed

 circles is considerably less straightforward. In fact, even their definition requires some care, and
 they are generally not unique. A paper of Jackson [12] contains a proof of the four-vertex theorem
 along those lines. He uses a proof by Erdos of the existence of specially adapted inscribed circles
 (p. 568). He also proves a result (Lemma 4.1) more general than our Lemma 4, making use of the
 Gauss-Bonnet theorem.

 REMARK 3. As we said at the outset, the usual proofs of the four-vertex theorem show that the

 presence of fewer than four vertices would lead to a contradiction. Such proofs give no hint as to
 the actual number of vertices present, either on a given curve, or "in general". It follows from
 Theorem 1 that a curve with only four vertices must intersect its circumscribed circle in only two
 points. By Lemma 2, those two points must be antipodal points of the circle. Clearly, that is a
 fairly special property, even within the class of convex curves. Further properties that must be
 satisfied by curves with only four vertices have been derived by Jackson [12] and others. We are
 thus led to two questions, each of which may be considered either for the class of smooth convex
 curves, or more generally, for closed Jordan curves.

 1. Is it more likely for a curve to have only four vertices, or to have at least six vertices?
 2. Is it more likely for a curve to intersect its circumscribed circle in only two points, or in at

 least three points?

 Intuitively, one may expect a "tripod" effect; that is, the circumscribed circle is most likely to
 touch the curve at exactly three points (see Fig. 1). We are thus led to formulate the following
 precise problem.

 Is there a natural measure on the space of all smooth closed curves (either convex or Jordan)? In

 terms of such a measure, what are the relative sizes of the sets of curves which intersect their
 circumscribed circles in (a) exactly two points, (b) exactly three points, (c) more than three points?
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