

Brain White

Otis Chodosh

David Hoffman Shuli Chen

Mean curvature flow is a way to let submanifolds in a manifold evolve •

The curvature vector points in a direction which serves to smooth the curve out •

The curve shortening flow is $\frac{\partial X}{\partial t} = \frac{\partial^2 X}{\partial s^2}$

Where s is the arc-length parameter •

An embedded curve $\Gamma \subset \mathbb{R}^2$ and its curvature vector \vec{k} .

Because s changes with time $\,$ this is not the ordinary heat equation $\,$ but a non-linear heat equation $\,$ However $\,$ it still has the nice smoothing properties $\,$

If , for example , Γ is initially C^2 , then for t>0 small , Γ_t becomes real analytic \circ

A ordinary <u>heat equation</u> is $u_t = ku_{xx}, k > 0$

§ Translating soliton translate 翻譯 轉化

Mean curvature flow:

An example of geometric flow of hypersurfaces in Riemannian manifold •

直觀上,如果曲面上一點移動的速度法向分量由曲面的均曲率給出,則一曲面族在均曲率流下演化。

例如,球面在均曲率流下會透過向內均勻收縮而演化(因為球面的**均曲率向量**指向內)。除特殊情況外,均曲率流都會出現奇點。

在封閉體積恆定的約束下,稱為表面張力(surface tensor)流。

均曲率流在幾何分析,幾何測度理論,偏微分方程,微分拓撲,數學物理…的 十字路口。

擴散 diffusion 擾動 perturbation **Laplace-Beltrami operator** denoted as Δ_M The Laplace-Beltrami operator is the <u>divergence</u> of the (Riemannian) gradient: $\Delta f = div(\nabla f)$

 $L_X dv = (divX)dv$ [Lie derivative]

The divergence of a vector field X on the manifold is defined:

 $(\nabla \cdot X)dv := L_X dv$ In local coordinates, one obtains

 $\nabla \cdot X = \frac{1}{\sqrt{|g|}} \partial_i (\sqrt{|g|} X^i)$ then the formular for the Laplace-Beltrami operator aplied to a

scalar function f is , in local coordinates
$$\Delta f = \frac{1}{\sqrt{|g|}} \partial_i (\sqrt{|g|} g^{ij} \partial_j f)$$

$$\frac{\partial u}{\partial t} - \Delta u = 0$$
 with initial data u_0 and natural boundary condition on $\partial \Omega$

[heat equation]

The geometric diffusion equation $\frac{\partial x}{\partial t} = \Delta_{M_t} x \cdots (*)$ for the coordinates x of the

corresponding family of surfaces $\{M_t\}_{t\in[0,T)}$

A classical formula says that , given a hypersurface in Euclidean space , one has :

 Δ_{M} , $x = \tilde{H}$, where \tilde{H} represents the mean curvature vector \circ

This means that (*) can be written as
$$\frac{\partial}{\partial t}x(p,t) = \tilde{H}(p,t)$$

Theorem

Given a compact, immersed hypersurface M in \mathbb{R}^{n+1} then there exists a unique mean curvature flow defined on an interval [0,T) with inatial surface M.

Theorem (Maximum/comparison principle)

If two compact immersed hyperface of \mathbb{R}^{n+1} are initially disjoint , they remain so \circ

Theorem

Convex , embedded , compact hypersurfaces converge to points $p \in \mathbb{R}^{n+1}$. After rescaling to keep the area constant , they converge smoothly to round spheres .

Consider the euclidean product $M = \Gamma \times R^{n-1}$

Where Γ is the grim reaper(鐮刀) in \mathbb{R}^2 represented by the immersion

$$f:(-\frac{\pi}{2},\frac{\pi}{2})\to R^2$$

$$f(x) = (x, \log(\cos x))$$

Let M_t be the result of flowing M by mean curvature flow for time t , then $M_t = M - te_{n+1}$, where $\{e_1, e_2, ..., e_{n+1}\}$ represents the canonical basis of R^{n+1} \circ In other words , M moves by vertical translations \circ

§ Translator

A **translator** is a hypersurface M in R^{n+1} such that $t \to M - te_{n+1}$ is a mean curvature flow \circ i.e. such that normal component of the velocity at each point is equal to the mean curvature at that point $: \tilde{H} = -e_{n+1}^{\perp}$

The cylinder over a grim-reaper curve, i.e. the hypersurface in \mathbb{R}^{n+1} parameterized by

$$\Upsilon: (-\frac{\pi}{2}, \frac{\pi}{2}) \times \mathbb{R}^{n-1} \to \mathbb{R}^{n+1} \text{ given by } \Upsilon(x_1, ..., x_n) = (x_1, ..., x_n, -\log \cos x_1) \text{ is a}$$

translatting soliton •

We can produce others examples of solitons just by scaling and rotating the grim reaper. In this way, we obtain a 1-parameter family of translating solitons parametrized by $\mathscr{G}_{\theta}: \left(-\frac{\pi}{2\cos(\theta)}, \frac{\pi}{2\cos(\theta)}\right) \times \mathbf{R}^{n-1} \longrightarrow \mathbf{R}^{n+1}$

$$\mathscr{G}_{\theta}(x_1, \dots, x_n) = (x_1, \dots, x_n, \sec^2(\theta) \log \cos(x_1 \cos(\theta)) - \tan(\theta) x_n), \quad (3.2)$$

where $\theta \in [0, \pi/2)$. Notice that the limit of the family F_{θ} , as θ tends to $\pi/2$, is a hyperplane parallel to \mathbf{e}_{n+1} .

§ Variational approach

Tom Ilmanen(1961-):

A translating soliton M in R^{n+1} can be seen as a minimal surface for the weighted volume functional $A_f[M] = \int_M e^{-f} d\mu$ where f representes the Euclidean height function, that

is , the restriction of the last coordinate x_{n+1} to M \circ

§ Examples

Bowl(碗) soliton (translating paraboloid)

Translating catenoids

Fig. 5. The bowl soliton in ${\bf R}^3$ and the translating catenoid for $\lambda=2.$

§ Graphical translator

If a tranlator M is the grapf of function $u:\Omega\subset \mathbb{R}^n\to\mathbb{R}$, we will say that M is a translating graph \circ

Translator equation
$$D_i(\frac{D_i u}{\sqrt{1+|D_u|^2}}) = -\frac{1}{\sqrt{1+|D_u|^2}}$$

- § The Spruck-Xiao convexity theorem
- § Omori-Yau theorem
- § Characterization of translting graphs in R^3

參考資料

- 1. Soliton
- 2. The evolution of hypersurfaces in Riemannian and Lorentzian manifolds