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Mean curvature flow 1s a way to let submanifolds in a manifold
evolve °

The curvature vector points 1n a direction
which serves to smooth the curve out °

2
The curve shortening flow 1s X = 0 )2(
ot 0s

Where s 1s the arc-length parameter °

k

An embedded curve I' B2 and its curvature vector k.

Because s changes with time > this is not the ordinary heat equation * but a non-linear heat
equation ¢ However > it still has the nice smoothing properties ©

If » for example > Tis initially C? - then for t>0 small > I', becomes real analytic °
A ordinary heat equation is U, =ku,,k >0
§ Translating soliton

translate B #H4b
Mean curvature flow :

An example of geometric flow of hypersurfaces in Riemannian manifold
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5L diffusion #E#)) perturbation Laplace-Beltrami operator denoted as A,
The Laplace-Beltrami operator 1s the divergence of the (Riemannian) gradient -
Af =div(Vf)

L, dv = (divX)dv [Lic derivative]

The divergence of a vector field X on the manifold 1s defined -
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(VeX)dv:=L,dv Inlocal coordinates * one obtains

1 i . .
VeX =—0, (\/H X"') then the formular for the Laplace-Beltrami operator aplied to a

Jol

scalar function fis » in local coordinates Af = \/ﬂai( \/@g ijaj f)
g

ou e .
i —Au =0 with initial data U, and natural boundary condition on 0€2

heat equation]

e . OX , .
The geometric diffusion equation 7 = Ay, X -++(*) for the coordinates x of the

corresponding family of surfaces {Mt} o)

A classical formula says that > given a hypersurface in Euclidean space * one has -

Ay X=H > where H represents the mean curvature vector °

This means that (*) can be written as %X( p,t) = H (p,t)

Theorem
Given a compact * immersed hypersurface M in  R™  then there exists a unique mean
curvature flow defined on an interval [0, T) with inatial surface M °

Theorem (Maximum/comparison principle)
If two compact immersed hyperface of R™ are initially disjoint > they remain so °

Theorem
Convex » embedded * compact hypersurfaces converge to points p e R™™ = After
rescaling to keep the area constant » they converge smoothly to round spheres ©

Consider the euclidean product M =I'xR"™*
Where T is the grim reaper(8 /7)) in R represented by the
‘ immersion

y

f-Z Dy ,Re
( > 2)—>

f (x) = (x,log(cos x))
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Let M, be the result of flowing M by mean curvature flow for time t > then
M, =M —te,, * where {&,8,,...,6,,}represents the canonical basis of R™" ° In other

words > M moves by vertical translations ©

§ Translator
A translator is a hypersurface M in R™ such that t — M —te_, is a mean curvature

flow ° 1.e. such that normal component of the velocity at each point is equal to the mean

curvature at that point : H =-€;,

The cylinder over a grim-reaper curve > i.e. the hypersurface in  R™ parameterized by
. Y/ n-1 n+l _: .

Y: (_E’E)X R"™ = R"™ given by Y(X,...,X,) =(X,....,X,,—logcosx,) isa

translatting soliton °

We can produce others examples of solitons just by scaling and rotating the
grim reaper. In this way, we obtain a 1—parameter family of translating solitons

parametrized by ¥ : (_ﬁs(ey ﬁm) <« R"—1 — R+l
Gy(x1,...,2,) = (21,...,7,,sec? () log cos(x, cos(f)) — tan(f)x,,), (3.2)
where 6 € [0,7/2). Notice that the limit of the family Fj, as 6 tends to 7/2, is

a hyperplane parallel to e, 1.

§ Variational approach
Tom IImanen(1961-) -
A translating soliton M in  R™" can be seen as a minimal surface for the weighted volume

functional A;[M]= J.M e "du where f representes the Euclidean height function > that

is » the restriction of the last coodinate X,,, to M °
§ Examples

Bowl(#t) soliton (translating paraboloid)
Translating catenoids
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Fig. 5. The bowl soliton in R?® and the translating catenoid for A = 2.

§ Graphical translator
If a tranlator M is the grapf of function Q<= R" — R » we will say that M is a
translating graph °
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§ The Spruck-Xiao convexity theorem

Translator equation D, (

§ Omori-Yau theorem
§ Characterization of translting graphs in R®

SEER
1. Soliton
2. The evolution of hypersurfaces in Riemannian and Lorentzian manifolds
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