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GEOMETRY OF MEMBRANES

Z.C.TU

June 14, 2011

Abstract. This review reports some theoretical results on the Gegnoéimem-
branes. The governing equations to describe equilibriunfigorations of lipid
vesicles, lipid membranes with free edges, and chiral lp@mnbranes are derived
from the variation of free energies of these structures. &analytic solutions to
these equations and their corresponding configuratiorslsoeshown.

1. Introduction

Membranes are very crucial to living organisms. They arebéueiers of cells

and ensure cells to be relatively isolated individuals Hilit &le to exchange
some materials between the inner sides and outer surr@mttimough specific
ways due to the fancy properties of membranes. Membranedlysonsist of

lipid bilayers mosaicked various kinds of proteins. They also the key factors
to determine shapes of some kinds cells. In particular, tbenbave discoidal
shape of red blood cells is regarded as a result of minimittiegfree energy of
membranes under the area and volume constrairnts|[4, 11figecad blood cells
have no complex inner structures. The equilibrium confiioma of membranes
have attracted much attention of mathematicians and gdhiss[@8] 31/, 33,37, 45].
A membrane is thought of as a 2-dimensional (2D) smooth sarifa Euclidean

spaceE? because its thickness is much smaller than its lateral diinen The

first step to investigate configurations of membranes istoocting a free en-
ergy functional by consideration of symmetry. Then the gowg equations to
describe the equilibrium configurations can be derived Iiatian of the free en-
ergy with some constraints. The next task is seeking fortigoisi to satisfy the
governing equations and comparing the results with typgpkriments.

In this review, we will present some purely theoretical fsson Geometry of
membranes. For simplicity, we merely focus on structureBpad membranes
and only select the theoretical problems that both phytsieisd mathematicians
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are interested in. The governing equations to describdilequim configurations
of lipid structures are derived. Several solutions to thersgations and their cor-
responding geometries are also investigated. The restofdhiew is organized
as follows. In Sed.]2, we give a brief introduction to preiany in mathemat-
ics and physics including surface theory and variationghod based on moving
frame, and Helfrich’s model of lipid bilayer. In Séd. 3, weide a shape equation
that describes equilibrium configurations of lipid vesicle- closed lipid bilay-
ers. Then we discuss some analytic solutions and theirgmrraling configura-
tions which include surfaces of constant mean curvaturasfdiconcave discoid,
cylinder-like vesicles, and so on. In SEE. 4, we investigdipid membrane with
free edge(s). The shape equation and boundary conditiaesilieg equilibrium
configurations of the membrane are derived. Then we distiessdmpatibility
between the shape equation and boundary conditions, aifyg fiex theorems of
non-existence. In Setl] 5, we construct the free energyianaitof chiral lipid
membranes in terms of symmetric argument and then derivgairerning equa-
tions to describe their equilibrium configurations by vaolmal method. Some
analytic solutions and their corresponding configuratiaresalso shown. In the
last section, we give a brief summary and a list of relatechapeestions.

2. Preliminary in Mathematics and Physics

In order to continue our discussion, we first introduce savieey mathematical
and physical concepts and tools that will be used in theviellg sections.

2.1. Surface Theory Based on Moving Frame
2.1.1. Moving Frame Method

A membrane can be regarded as a smooth orientable surfaceldethinE?. The
properties of surface such as mean curvature and Gaussiatwe determine
the shape of membrane. As shown in Fif. 1, each point on sufdacan be
represented a position vectarAt that point we construct three unit orthonormal
vectorsey, e, andes with ez being the normal vector of surface! at pointr.
The set of right-handed orthonormal triple-vectées, e, es} is called a frame
at pointr. Different points on the surface have different vectars;, e, andes,
thus the se{r; e, es, e3} is called a moving frame.

Let us imagine a mass point that moves from positida its neighbor position’
on the surface. The length of the path is denoted\y Then we can define the
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Figure 1. The moving frame on a surface.

differentiation of the frame as

dr = lim (r' —r) = wie; + woeo, (1)
As—0
and
de; = Alifgo(e; —e;) =wje;, (i=1,2,3) (2)

wherew;, wo, andw;; (4,5 = 1,2,3) are 1-forms, andd’ is the exterior differ-

ential operatorl[7]. The 1-formy;; is ant-symmetric with respect toandj, that

isw;; = —wj;. Here and in the following contents without special statetsiethe
repeated subscripts represent summation from 1 to 3. Aaddily, the structure
equations of the surface can be expressedias [7]:

dwi = wig A wo
dwe = wa1 A wq (3)
dwij = wip Awy; (4,7 =1,2,3),

w13 o a b w1
(2)-0Go(z) @
where ‘A’ represents the wedge production between two differefviahs. The
. a
matrix (

and

b ﬁ ) is the representation matrix of the curvature tensor. #eetr



and determinant are two invariants under the coordinatgiont aroundes which
are denoted by
2H=a+c¢ and K =ac—b> (5)

H and K are called the mean curvature and Gaussian curvature,cteghe

They determine the shape of the surface and can be expressHd-a —(1/R; +

1/Ry) and K = 1/R; Ry with two principal curvature radiR; and R, at each
point on the surface.

Now consider a curve on surfage!. Its tangent vector is denoted by Let ¢ be
the angle betweetiande, at the same point. Then the geodesic curvatyrehe
geodesic torsion,, and the normal curvature, along the direction of can be
expressed as [41]:

k‘g = (dqb + W12)/d8
Tg = bcos2¢ + (¢ — a) cos ¢sin ¢ (6)
kyn = acos® ¢ + 2bcos ¢sin ¢ + csin® ¢,

whereds is the arc length element alortg If t aligns withe;, then¢ = 0,

kg = wi2/ds, 7y = b, andk,, = a. In the principal frame, the geodesic torsion
and normal curvature can be expressed as
cos’¢ sin®¢

kn = R. Ry’ 7y = (1/Ry — 1/R3) cos ¢ sin ¢. (7)

2.1.2. Stokes’ theorem and related identities

Stokes’ theorem is a crucial theorem in differential geamethich reads

fo- Lo

where® is a domain with boundarg®. w is a differential form ond®. In
particular,fg dw = 0 for a closed domaim.

From Stokes’ theorem, we can derive several identitiesdists follows|[[411, 45].
(i) For smooth functiong’ andh on 2D subdomair® C M,
/ (fdxdh — hdxdf) = j{ (fxdh — hxdf)
D

99

/ (fdxdh — hdxdf) = 7{ (fxdh — hxdf) (9)
D

o9

/ (fd¥dh — hdxdf) = f{ (f¥dh — hxdf),
) 0D



where x is Hodge star operator satisfyingy, = ws and+wy = —w;. d and
* are generalized differential operator and generalizedgeadar which satisfy
df = fiwiz + fowoz and*xdf = fiwas — fowis if df = frwi + fows [4142].

(ii) If uwandv are two vector fields defined on 2D subdomarC M, then [43]

/(u-d*dv—v-d*du):f (u-*dv — v - xdu)
D 09

/@ (- dedv — v - dedu) = 7{) (v — v s (10)

/(u'd%av—v-diau):j{ (u-%dv — v - &du),
D 0D

where the ‘dot’ represents the inner product of vectors. drmplicity, Eqs[(9)
and [10) are still called Stokes’ theorem in this review. yrhes widely used in
the variational process.

Additionally, we can also define the gradient, curl, divertgé.aplace operators,
etc. on the surface in terms of the differential operatostdodge stars. They are
summarized as follows$ [44, 45]:

(Vxu)dA=d(u-dr), (V-u)dA =d(*u-dr)
(V-u)dA =d(*u-dr), (V-u)dA = d(+u-dr)
Vf-dr=df, Vf-dr=df

Vif)dA=dxdf, (V-Vf)dA=dxdf
V-V/f)dA = dxdf

-Vf)dA=u-dr A*df (11)
Vf)dA=u-dr Axdf

Vf)dA=u-dr A%df

V?u)dA = d xdu, (Vu) - dr = du

Vu: Vv)dA = duAdv

~dr = —wy9, (V- S)dA = —d * w2,

—~

=

=

AAE\/-\/—\/—\

05}

wheredA = wi A we andS are the area element and spin connection of the sur-
face, respectivelyA represents calculating dot production and wedge productio
simultaneously.



2.2. Helfrich’s Model

In 1973, Helfrich proposed a spontaneous curvature modeésaribe the free
energy of lipid membranes by analogy with a bent box of ligrigstal in Smectic
A phasel[1l]. The free energy is in fact a functional definethénspace of shapes
of membranes, which reads

FH:/ [%(QH—I—CO)Q—F/CK dA, (12)
M

whereM, H, andK represent the membrane surface, mean curvature, and Gaus-
sian curvature, respectively, andk are two bending moduli. The former should

be positive, while the latter can be negative or positivelifid membranes.cg

is called spontaneous curvature, which reflects the asyrwalét chemical or
physical factors between two leaves of lipid bilayers.

On the other hand, the spontaneous curvature model can elsbthined from

symmetric argument. A lipid membrane can be locally regduae 2D isotropic

elastic entity. Thus the local free energy dengitghould be invariant under ro-
tational transformation around the normal direction of tfeembrane surface. In
other words, it should be a function & and K becaused and K are the funda-

mental invariants of the surface under rotational tramsédion. Up to the second
order terms of curvatures, it can be expanded as

fo=Ao+ A1H + Ay H? + A3K, (13)
which can be rewritten as
fo= 0B t o) + B (14

with omitting an unimportant constant. This is no other thlaa integrand in
Eq. (12). Therefore, the spontaneous curvature model ieéml significance
not only for lipid membranes, but also for other membranesising of isotropic
materials. The following discussions are mainly based olfridle’s spontaneous
curvature model.

2.3. Variational Method Based on Moving Frame

To obtain governing equations that describe equilibriumfigoirations of lipid
membranes, we need to minimize the free energy. That is, wmaldltalculate
the variation of functionals defined in the space of shapesehbranes. In this
space, each shape might be expressed as a function, buffithialeal domain



is not a fixed planar domain. It is difficult to deal with thisseaby using the
traditional calculus of variation. Now we will introduceettvariational method
based on the moving frame developed by the present authddanéng [40, 41,
45], which is available to deal with variational problemssumfaces.

Any infinitesimal deformation of a surface can be achievedahlgisplacement

vector
or =v = Qe (15)

at each point on the surface, wheérean be understood as a variational operator.
The frame is also changed because of the deformation of tifi@ceu which is
denoted as

(56,’ = Q,-jej (Z = 1, 2, 3), (16)

whereQ;; = —Q;; (4,7 = 1,2,3) corresponds to the rotation of the frame due to
the deformation of the surface. Frafdr = dor, dde; = dde;, and Eqs.[(1)E(4),
we can derive

(50.)1 =dv- e; — nggl = dQl + QQWQl + nggl — w2§221

dwe = dv - eg — w112 = dQe + Qwio + Q3wsze — w12 (17)

dwij = dQy; + Qywy; — wikl;

dv - e3 = dQ3 + Qqwiz + Qowag = Q3w + Nogws.
These equations are the essential equations of the vaaatizethod based on the
moving frame. With them as well as Eqs| (4) abd (5), we carlyedsrive
0dA = (divv — 2HQ3)dA
6(2H) = [V? 4 (4H? — 2K)|Q3 + V(2H) - v (18)
0K =V -VQ3+2KHQ5 4+ VK - v.

Using the above equationid (8)-(6), (B)4(10).1(17) (@@)can deal with almost
all variational problems on surfaces.

3. Lipid Vesicles

Most of lipid molecules are amphiphiles with a hydrophiliead group and two
hydrophobic hydrocarbon tails. When a quantity of lipid ewlles disperse in
water, they will assemble themselves into a bilayer vesasl@epicted in Fid.]2
due to hydrophobic forces. In this section, we will thearaity understand vari-
ous configurations of lipid vesicles.
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Figure 2. A cartoon of lipid vesicle.

3.1. Shape Equation to Describe Equilibrium Configurations

A lipid vesicle can be represented as a closed surfetcelts equilibrium shape

is determined by minimizing Helfrich’s free enerdy [12) endhe constraints of
constant area and volume because experiments reveal ¢haiteth of lipid mem-
branes are almost incompressible and the membranes aremegdde for the
solutions in both sides of the membranes. Thus we can inteotluo Lagrange
multipliers A andp to replace these two constraints, and then minimize the fol-
lowing functional

k. -
F = / {5(2}1 + )24+ kK| dA+ A+ pV, (19)
M

where M, A andV represent the membrane surface, total area of the vesidle an
volume enclosed by the vesicle.andp can also be understood as the apparent
surface tension and osmotic pressure of the lipid vesicle.

The Euler-Lagrange equation of functionall(19) can be @eriyy using the vari-
ational method presented in SEE. 2, which reads [26,27,41]

P —2X\H + (2H + ¢0)(2H? — coH — 2K) 4+ 2V*H =0 (20)

with reduced parametes = p/k. andX = \/k.. This formula is called the
shape equation because it describes the equilibrium shudpigsd vesicles and
represents the force balance along the normal directioneofilbnane surfaces.

Now let us consider an axisymmetric vesicle generated byaaplcurve shown
in Fig.[3. Rotate the curve around- axis and then mirror with respect to the hor-
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Figure 3. The generation curve for an axisymmetric vesicle.

izontal plane.p is the revolving radius, and is the angle between the tangent of
the curve and the horizontal plane. Thatds/dp = tan . Through simple cal-
culations, we can obtair2H = h = sin¢/p + (siny)’, K = sin(sinv)’ /p,
andV?(2H) = —(cos/p)(pcos k') where the ‘prime’ represents the deriva-
tive with respect tp. Substituting these relations into EQ.{20), we derive

n coh -
(h — co) (7 n COT —2K> —ﬁ—Ah+$(pcos¢h’)’ —0, (21

The equivalent form of this equation is first derived by Hu &hdYang [14]. The
shape equation (21) of axisymmetric vesicles is a thirdodifferential equation.
Following Zheng and Liu’s work [54], we can transform it indosecond order
differential equation

- M0 — o2
cos h’ + (h — cp) sin gy’ — Atan ) + o —Pp” _ tany (h—cp)? =0 (22)
2p cos 2
with an integral constanyy. It is found that the shape equation of axisymmetric
vesicles obtained by Hu and Ou-Yang degenerates into thizedeby Seifertet
al. [36] whenny = 0 in Eq. (22) or for vesicles with spherical topology free of

vl

singular points([32,54].

3.2. Analytic Solutions and Corresponding Configurations

Now we will show several analytic solutions to shape equatif20) or [2R) of
lipid vesicles that we have known till now. They correspamdurfaces of constant
mean curvature, torus, biconcave discoid, and so on. Madstesk solutions are
found by Ou-Yang and his coworkers. We will see that only sphtorus, and
biconcave discoid can correspond to lipid vesicles.
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3.2.1. Surfaces of Constant Mean Curvature

Obviously, surfaces of constant mean curvature (inclugipigere, cylinder, and
unduloid shown in Fig.14) can satisfy the shape equatiorst,A&t us consider a
spherical surface with radiug. ThenH = —1/R and K = 1/R?. Substituting
them into Eq.[(2D), we derive

PR% 4+ 2AR — (2 — coR) = 0. (23)

This equation gives the relation between sphere raftiuspontaneous curvature
co, reduced osmotic pressupeand reduced surface tensian

/

Figure 4. Surfaces of constant mean curvature: sphere (left), ogti(uid-
dle), and unduloid (right).

Next, H = —1/2R and K = 0 for a cylindrical surface with radiu®. Then
shape equatiof (20) requires

2PR% 4+ 2AR? — 1+ 2R? = 0. (24)

For other surfaces of constant mean curvature such as uddélas a constant
but K is not a constant. In terms of shape equation (20), we obtain

H=—cy/2 (25)

andp = —Aco.

Note that cylindrical surface and unduloid are in fact noseld surfaces. Alexan-
drov proved that “An embedded surface (no self-intersagtiwith constant mean
curvature inE* must be a spherical surface” [1]. Thus we can only observe one
kind of vesicles of constant mean curvature — sphere.
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3.2.2. Torus

As shown in Fig[h, A torus is a revolution surface generatgd lzircle with
radiusr rotating around an axis in the same plane of the circle. Thelriag
radius R should be larger than. The torus can be expressed as vector form
{(R+ rcosp)cosb, (R + rcosp)sinf,rsinp}. Through simple calculations,
we have2H = — (R + 2r cos ) /r(R + rcos ) andK = cos ¢/r(R + 1 cos p).
Substituting them into Eq_(20), we derive

[(2¢21% — dcor + 4Nr? + 2pr3) /1] cos®
+[(5c2r% — 8cor + 10Ar2 + 6p13) /v?] cos?
+[(4cr? — deor + 8Ar% + 6p72) /1] cos @
+2/v% + (Er? — 1) +2(pr + N2 =0 (26)
with v = R/r. If v is finite, then Eq.[{26) holds if and only if the coefficients of
{1, cos ¢, cos? p, cos® p} vanish. It follows2Ar = cy(4 — cor), pr? = —2¢y and
v=R/r=2. (27)

That is, there exists a lipid torus with the ratio of its twahgeation radii being
V2 (called /2 torus by Ou-Yang[[28]), which was confirmed in the experiment
[20]. It is also found that nonaxisymmetric tori [35] congtted from conformal
transformations of/2 torus also satisfy the shape equation.

Figure 5. Torus (left) and its generation curve (right).

To check the consistency, we need also verify that the almyeéal solution can
indeed satisfy shape equatidnl(22) of axisymmetric vesidieis not hard to see
/2 torus can be generated from a curve expressed as

siny = (p/r) £ V2. (28)

Substituting it into Eq.[{22), we arrive ab\r = co(4 — cor), pr? = —2¢o and
no = —1/r #0.
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3.2.3. Biconcave Discoid
For0 < copp < e, the parameter equation

sinty = —copn(p/pp)
{ z=20+ fop tan ydp (29)

corresponds to a planar curve shown in Fig. 6. Substitutimgto Eq. [22), we
havep = 0, A = 0, andny = 2¢y # 0. That is, a biconcave discoid generated
by revolving this planar curve aroundaxis can satisfy the shape equation of
vesicles. This result can give a good explanation to theesb&puman red blood
cells under normal physiological conditions([9}21], 23].

V4

Figure 6. Biconcave discoid (left) and its generation curve (right).

A small comment is thaty = 2¢y # 0 reflects the singularity at two poles of
the biconcave discoid. Whether does this singularity existal red blood cells?
What is the biological meaning of this singularity? Or ddasré exist a normal
solution to the shape equation that can also explain theestiaged blood cells?
These open questions need further discussions.

3.2.4. Unduloid-Like and Cylinder-Like Surfaces

If we only concern solutions to the shape equation, two casesalso widely
discussed. The first case [19] 22] is an axisymmetric sudaocerated by planar
curve satisfying

siny =

P, Pm 4
Lo 2 9 (0 < pmco < 4/3). (30)
<pm p ) pA.cd ( /)

PmCo
The generated surface abides by the shape equationpwith —2cqp?, A=
2/p2, — c2/2, andny = 2co — 3/cop?,. This surface has the unduloid-like shape
but with nonconstant mean curvature.
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The second one is a cylinder-like surface generated by aptanve translating
along the normal of the plane. If we denote the curvature ettirve ass, then
the geometric quantities of the generated surface can bessqd a8H = —&,
K =0, andV?(2H) = —#, where the ‘dot’ above: represents the derivative
with respect to the arc length of the curve. Thus shape emquéil) degenerates
into [2,48/53]:

PHMARY/2—K=0 (31)

with A = X + c2/2. The above equation is integrable, which results in
K2 =&+ 2pk + A% — k14 (32)

with an integral constanf,. This equation can be further solved in terms of
Elliptic functions [2[ 48,58, 55].

It is necessary to note that these two cases do not corregporahl vesicles
because they are not closed surfaces.

4. Lipid Membranes with Free Edges

The opening-up process of liposomal membranes by talin y& observed,
which gives rise to the study of equilibrium equation andrmtary conditions
of lipid membranes with free exposed edges. This problemtihesretically in-
vestigated by Capovillat al. [5] and Tuet al. [40] in terms of different methods.
In this section, we will present these theoretical resuti$ subsequent advance-
ments.

4.1. Shape Equation and Boundary Conditions to Describe Edlibrium Con-
figurations

As shown in Fig[F, a lipid membrane with a free edge can beesgad as an
open smooth surfaceMl) with a boundary curve() in geometry. Because the
free exposed edge is energetically unfavorable, we ads@lirie tension (energy
cost per length) to be > 0. Then the free energy functional that we need to
minimize can be expressed as

F:/ [%(2H+co)2+kK dA + XA+ ~L, (33)
M

wherelL is the total length of the free edge.
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Figure 7. An open smooth surfaceM) with a boundary curve ).
{e1, ez, e3} forms the frame at some point on the surfade, b, e;} also
forms the right-handed frame for the pointdhsuch that is the tangent of
C andb points to the side that the surface is located in.

By using the variational method introduced in Sdc. 2, we qaneaat a shape
equation[[40]
(2H + ¢9)(2H? — ¢oH — 2K) — 2\H + V*(2H) = 0, (34)

and three boundary conditioris [40]

[(2H + ¢p) + l;:/{n] o= 0, (35)
[—20H /b + ki, + k) (C —0, (36)
[(1/2)(2H + co)® + FK + X+ ]| =0, (37)

wherel = Ak, k = k/k., and¥y = ~/k. are the reduced surface tension, re-
duced bending modulus, and reduced line tension, resp8ctix,,, ~,, andr,
are the normal curvature, geodesic curvature, and geotibgsion of the bound-
ary curve, respectively. The ‘dot’ represents the derreatvith respect to the arc
length of the edge. Equation (34) expresses the normal balegce of the mem-
brane. Equation$ (85]—(37) represent the force and mona¢arides at each point
in curveC'. Thus, in general, the above four equations are indeperafezdch
other and available for an open membrane with several edges.

Now we consider axisymmetric membranes. When a planar ci@/eshown
in Fig[8 revolves around axis, an axisymmetric surface is generated. 4.et
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Figure 8. Outline of an axisymmetric open surface. Each open surfaoe c
be generated by a planar curve AC rotating around z aiss the angle
between the tangent line and the horizontal plane.

represent the angle between the tangent line and the htaizmane. Each point
in the surface can be expressed as vectet {pcos ¢, psin ¢, z(p)}, wherep
andg are the radius and azimuth angle that the point correspandattoduce a
notationo such that = 1if t is parallel todr/d¢, ando = —1 if t is antiparallel
to dr/0¢ in the boundary curve generated by point C. The above eqsaf8#)—
(37) are transformed into

2
(h — o) <%+%—2K> —Xh—l—%(pcoswh')’:& (38)
[h — ¢y + ksin T,Z)/p] =0 (39)
[—J cos ph' + ysin ¢/p]c =0, (40)
F(h—co)2+1%K+i—afycow] —0, (41)
2 P lc

with h = sinv/p + (sin)’ and K = sint)(sinv)’ /p. The ‘prime’ represents
the derivative with respect ta.
Shape equatior_(88) is integrable, which reduces to a secatat differential
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equation

coshh’ + (h — ¢o) sinyy)’ — Xtan 1 + m__ tany
pCcos P 2

with an integral constang, [46]. This equation is equivalent to Ed. (22) with
zero osmotic pressure. The configuration of an axisymmeien lipid mem-
brane should satisfy shape equationl (42) and boundary teomsli{39)-{(41). In
particular, the points in the boundary curve should satisfiyonly the boundary
conditions, but also shape equatidnl(42) because they@atelin the surface.
That is, Eqs.[(39)E(41) an@ (#2) should be compatible witthezther in the edge.
Substituting Egs[(39]-(41) inté_(42), we derive the coriiglity condition [46]
to be

(h—co)* =0 (42)

o = 0. (43)
It is a necessary (not sufficient) condition for existenceaxisymmetric open
membranes. Under this condition, the shape equation iseedo

cos ph! + (h — ¢o) sin )’ — Atan ) — y(h —¢9)? =0, (44)

while three boundary conditions are reduced to two equstioa. Egs.[(39) and

@I1).

4.2. Theorems of Non-Existence

Now our task is to find analytic solutions that satisfy boté shape equation and
boundary conditions. An obvious but trivial one is a cireud#sk with radiusR.
In this case, EqsL_(34]=(B7) degenerate to

AR+ 4 = 0. (45)

Can we find nontrivial analytic solutions? We will prove selegheorems of
non-existence in this subsection, which imply that it is @éinhopeless to find
nontrivial analytic solutions.

Theorem 1 There is no open membrane being a part of a spherical vesicle.

Proof. For a sphere with radiug, we can calculat¢d? = —1/R, k, = —1/R
andr, = 0 in terms of Eq.[(B) because= ¢ = —1/R andb = 0 for a sphere.
Boundary condition[(36) cannot be abided by. Thus an openbrem cannot be
a part of a spherical vesicle.
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Theorem 2 There is no open membrane being a part of a cylindrical swfac

Proof. For any line element on the surface of a cylinder with radjsve can
calculates,, = — cos? /R from Eq. [T) where) is the angle between the line
element and the circumferential direction. Additionalli,= —1/R is a constant.

If & = 0, then boundary conditiofi (B6) resultssn = 0, that is§ = 7/2. The

line along this direction is not a closed curve, and so cabeoas an edge of a
membrane. I # 0, then boundary conditiofi (B5) resultsip = (co — 1/R)/k,
which impliesé should be a constant. The unique closed curve is a circle, i.e
¢ = 0andx, = —1/R. Butt, = 0if # = 0, then contradicts with boundary
condition [36). Thus an open membrane cannot be a part ofaisphsurface.

Theorem 3 There is no open membrane being a part of a curved surface with
constant mean curvature.

Proof. Two special surfaces (sphere and cylinder) with constaameurvature
are discussed in the above theorems. Now we only need tatigates surfaces
with constantd but nonconstanf{. From shape equation of open membranes,
we derive two possible cases: fi) = —cy/2 # 0 and = 0; (i) H = ¢y =0
andX # 0.

In the former case, if: = 0, then boundary condition§ {36) arld{37) result in

#n = kg = 0. Thus the curvature of boundary curvesis= /2 + x2 = 0. That

is, this curve is a straight line which is not closed curvek ¥ 0, then boundary
conditions [(3b) and_(36) results ik}, = 0 and7, = constant. Using Eq. [¥),
we derive the principal curvatures for the points in the eusve constant. Then
Eq. (37) requires:;, = constant. That is, the curvature and torsion are constant
in the curve. The unique closed curve is a circle. But= 0 for a circle. Letc;
andc, represent the two principal curvaturésis the angle between the tangent
of the curve and one principal direction at each point in tnee. Then we have
two equationsk,, = ¢; cos? 0 + cysin® 6 = 0 andry, = (ca —¢1)sinfcosf = 0.
Substituting these two equations aRd= ¢, c; into Eq. [37), we obtaimk, = 0.

Thenk =, /w2 + £2 = 0, which contradicts with the preassumption of a circle.

In the latter caseH = ¢y = 0, similar to the proof in the former one, it also
leads to a contradiction. Thus there is no open membrang bgdart of a curved
surface with constant mean curvature.

Theorem 4 There is no open membrane being a part of Willmore surface.
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Proof. Let us consider the scaling transformation— Ar, where the vector
represents the position of each point in the membrane\daa scaling parameter
[6]. Under this transformation, we have — A?A, L — AL, H — A~'H, and
K — A72K. Thus, Eq.[(3B) is transformed into

F(A) = / ((ke/2)(2H)? + RK]dA
M
+  2kecoA / HdA 4 (X + kec2/2)A?A + yAL. (46)
M

The equilibrium configuration should satish#'/OA = 0 whenA = 1. Thus we
obtain

2¢ / HAA+ 2\ + 2)A + 3L = 0. (47)
M

This equation is an additional constraint for open memizane

Willmore surfaces satisfy the special form of Eq.1(20) witmishing and co
[50]. BecauseyL > 0, thus the constrainf (47) cannot be satisfied whea 0
andcy = 0. That is, there is no open membrane being a part of Willmoriace.

Figure 9. Schematics of several impossible open membranes with free
edges: parts of sphere, cylinder, unduloid, torus, bicemciscodal surface
(from left to right).

Corollary There is no open membrane being a part/&f torus.

Proof. Substitutingy/2 torus into Eq.[(3%), we obtair, = 0 and\ = 0. That is,
V/2 torus is a Willmore surface. In terms of theorEm 4, we arrivéinia corollary.

Theorem 5 There is no axisymmetric open membrane being a part of a bas@n
discodal surface generated by a planar curve expressethhy = —copIn(p/pp).

Proof. A biconcave discodal surface [21,23] generated by a planare ex-
pressed byin ¥ = —copIn(p/pp) with non-vanishing constantg andpp. To
avoid the singularity at two poles, we may dig two holes atbthe poles. Sub-
stituting this equation into shape equatibnl (42), we obain 0 andrny = 2co.
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That is, the biconcave discodal surface can be a solutioheslhape equation.
However,ny, = 2¢y # 0 contradicts to compatibility conditio (#3). Thus there is
no axisymmetric open membrane being a part of this bicondeso®dal surface.

In Fig.[9, we show several impossible open membranes withddges in terms
of the above theorems. These theorems suggest that it ifeksepe find exactly
analytic solutions to the shape equation and boundary tionsgliof open lipid

membranes. Quasi-exact solutions or numerical simulatawe highly appreci-
ated.

4.3. Quasi-Exact Solutions

Here the quasi-exact solution is defined as a surface withddge(s) such that
the points on that surface exactly satisfy the shape equadizd most of points
in the edge(s) abide by boundary conditions. In fact, thevggdo theoremi] 2
and[3 implies two possible solutions as shown in Eig. 10. @reestraight stripe
along the axial direction of cylinder, another is a twistyim which is a part of a
minimal surface {=0).

T - PO

Figure 10. Schematics of two quasi-exact solutions: straight stripag
axial direction of cylinder (left) and twist ribbon whichéspart of a minimal
surface (right).

Let we consider a long enough straight stripe along the axiattion of cylinder
that satisfies shape equatignl(34), thahis; (1 — c2R?)/2R?. The long enough
configuration ensure us to omit the boundary of two ends. @tezdl edges are
straight lines which have,, = k, = 7, = 0. Thus boundary conditions_(85) and
(B8) are trivial. The third boundary condition resultsn= (1 — coR)?/2R>.
Thus we arrive af = 0 andR = 1/cy. That is, a long enough straight stripe
along the axial direction of cylinder witR = 1/¢ is a quasi-exact solution.

Next, a twisted ribbon with pitcii” and width2u, can be expressed as vector form
{ucos ¢, usin ¢, ap} with |u| < ug, |p| < co and|a| = T//27. From simple
calculations, we have

H=0, K=—a/(u®+a?)? (48)
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for the points on the surface, and

knp=0,K = —a2/(u3 + a2)2
kg = uo/(uf + o) (49)

7y = af (uf + o”)

for the points on the edges.

It is easy to see that equatidn [48) can satisfy shape equi@h whency = 0.
Then equation[(49) naturally validates boundary conditi@B) and[(36). The
last boundary conditiori (37) leads o= [ka? — Fug(ud + o2)]/(u3 + a?)?,
which can be satisfied by proper parameterg, 5, uo anda. That is, the twist
ribbon is indeed a quasi-exact solution.

5. Chiral Lipid Membranes

In fact, our above discussions only concern lipid membrarese lipid molecules
are in Smectic A phase. In this phase, lipid molecules alipostt to the normal
direction of the membrane surface. However, there are alwoyrkinds of chi-
ral lipids in cell membranes. At body temperature, chirplds usually form
SmecticC* phase. They are tilting from the normal direction in a coniséangle.
It is necessary to develop Helfrich’'s spontaneous cureatandel introduced in
Sec[2.2 to cover the Smectit® phase. Based on symmetric argument or Frank
energy in the theory of liquid crystal, many theoretical misdand results were
achieved([1Z, 16, 25, 29, 30,138)39]. These theoretical tsaamtain much com-
plicated terms and many parameters, which make it is implestd derive the ex-
act governing equations for describing equilibrium confagions of chiral lipid
membranes. Here we will discuss a simplified version progdmsethe present
author and Seifer{ [44]. It is found that this concise thegam still explain most
of experimental phenomena.

5.1. Constructing the Free Energy

The free energy density for a chiral lipid membrane are sspgdo consist of the
following contributions.

(i) The bending energy per area is still taken as Helfrichisrf (14). That is, we
neglect the anisotropic effect of lipid molecules’ tilting the bending moduli.

(i) The energy per area originating from the chirality dfitig molecules has the
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Figure 11. Right-handed orthonormal fram{e,, ez, es} at any point in a
surface wheree; is the normal vector of the surface. (a) Surface without
boundary curve. (b) Surface with boundary curve wheis the tangent
vector of the boundary curve, amg in the tangent plane of the surface, is
perpendicular ta. (Reprint from Ref.[[44])

form [29]
fen = —hTm, (50)

whereh reflects the strength of molecular chirality. Without Iasthe generality,
here we only discuss the casefof- 0. ry, is the geodesic torsion along the unit
vectorm at each point. Heren represents the projected direction of the lipid
molecules on the membrane surface. If we take a right-haodbdnormal frame
{e1, ez, e3} as shown in Fid. 1lm can be expressed as = cos ¢e; + sin ges,
where¢ is the angle betweem ande;. then geodesic torsion,, and normal
curvatures,, alongm can be expressed as the similar form of Eg. (6).

(iii) The energy per area due to the orientational variatiotaken as
fou = (kt/2)[(V x m)? + (V- m)?], (51)

wherek; is a constant in the dimension of energy. This is the simpést of
energy cost due to tilting order invariant under the coati#rrotation around the
normal of the membrane surface. By defining a spin connedigtchS such that
V x S = K, one can derivéV x m)? + (V-m)? = (V¢ — S)? through simple
calculations[[24].

The total free energy density adopted in the present pépet, f. + fon + fou,
has the following concise form:

e _ k
G = 5 (2H +¢9)* 4 kK — hn + Efv% (52)
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with v = V¢ — S. This special form might arguably be the most natural and con
cise construction including the bending, chirality antdnd order, for the given
vector fieldm and normal vector fields.

5.2. Governing Equations to Describe Equilibrium Configuraions

The free energy for a closed chiral lipid vesicle may be exged as
F:/ GdA + MNA +pV, (53)
M

where A is the area of the membrane ahdthe volume enclosed by the vesicle.
A andp are two multipliers to implement area and volume constsaint

Using the variational method mentioned in §&c.2, we canirlbe governing
equations to describe equilibrium configuratians [44] as

2h(km — H) — k;V2h =0 (54)
and

OV2H + (2H + ¢9)(2H? — coH — 2K) — 2XH +

+h[V - (mV x m)+V x (mV - m)]

+kt[(ky — H)v? — Vv: Ves] =0 (55)
with reduced parametefs = h/kc, k; = ky/ke, p = p/ke, andX = M/ke. km
and k. are the normal curvature along the directionsnofandv, respectively.
When writing Eq.[(54), we have selected the proper gaugethatV - S = 0, or

elseV2¢ should be replaced witii?¢ — V - S. Additionally, we do not consider
singular points for closed vesicles different from tordigigoology.

Consider a chiral lipid membrane with a free edge as showngriHb. Its free
energy can be expressed as

F= / GdA + A + ~L, (56)
M

whereA is the area of the membrane ahdhe total length of the edge; repre-
sents the line tension of the edge.

Using the variational method mentioned in §&c.2, we canimhke governing
equations to describe equilibrium configurations of memérsurfaces as

2h(km — H) — k;V2h =0 (57)
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and
OV2H + (2H + ¢9)(2H? — coH — 2K) — 2AH
+A[V - (mV x m) + V x (mV - m)]
+kt[(ky — H)V? — Vv: Ves] = 0. (58)

Simultaneously, the boundary conditions obeyed by theddgge are derived as
[44].

vp = 0, (59)
(1/2)(2H + c0)? + kK — htm + (ks /2)v: + X + Ak, = 0, (60)
(2H + ¢o) + kten — (h/2)sin2¢ = 0, (61)
Ak + /%7"9 —20H/0b — iL(’Ut + (5) sin 2¢ + /;f/invt =0, (62)

wherer,, 7, and s, are the normal curvature, geodesic torsion, and geodesic
curvature of the boundary curve (i.e., the edge), respagtiw, andv, are the
components of in the directions ob andt, respectively. The ‘dot’ represents the
derivative with respect to arc length parametey is the angle betweam andt at

the boundary curve. Equatioris [59)-(62) describe the fancemoment balance
relations in the edge. Thus they are also available for aklipid membrane with
several edges.

5.3. Solutions and Corresponding Configurations

Now we will present some analytic solutions to the goverreggations of chiral
lipid membranes.

5.3.1. Sphere

For spherical vesicles of chiral lipid molecules with raglf, m,, is always van-
ishing because = ¢ = 1/R andb = 0. Thus the free energy (53) is independent
of the molecular chirality and permits the same existenobatility of left- and
right-handed spherical vesicles. This is uninterestirgg éa practice.

5.3.2. Cylinder

Here we consider a long enough cylinder with raditisuch that its two ends can
be neglected. The cylinder can be parameterized by twoblaga and z which
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are the arc length along the circumferential direction amordinate along axial
direction, respectively. Ledp be the angle betweem and the circumferential
direction. Then Eqs._(%4) and (55) are transformed into:[44]

fif(Bos + 022) + (h/R) cos 26 = 0, (63)
and

il[2(¢g - ¢g + Qbsz) sin 2¢ + (‘bss — ¢z + 4¢z¢s) COs 2@] + S\/R

+D+ (c§ — 1/R?)/2R + ks [(62 — 62)/2R + ¢52/R] = 0. (64)
where the subscripts and z represent the partial derivatives respect tand z,
respectively.

Itis not hard to see that = 7/4 and2pR? + 2AR? — 1 + ¢ZR? = 0 can satisfy
the above two equations. Thus a cylinder shown in [Fig. 12k wiiform tilting
state (tilting angley = 7 /4) is a solution.

(a) (b)
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Figure 12. Two possible chiral lipid membranes: (a) Cylinder with wnih
tilting state; (b) Torus with uniform tilting state.

5.3.3. Torus

A torus is a revolution surface generated by a cycle withusdirotating around
an axis in the same plane of the cycle as shown in[Fig. 5. It eaexpressed as
vector form{(R + rcos¢) cos @, (R + rcos ) sinf, rsin p}. Equation[(54) is
transformed into[44]:

1 ¢ 0 0¢

vhr
- g9, 9 GO1 VI s 2 = 65
V¥ cos g 902 + 90 [(V—i—cosgo)a@] i cos2¢ =0, (65)
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where¢ is the angle betweem and the latitude of the torus, while= R/r is
the ratio between two generated radii of the torus.

The uniform tilting state = —n /4) satisfies Eq[(65) and makes| h7y,dA to
take the minimum. Wity = —x /4, Eq. [55) is transformed intd [44]:

(2 — kyp) /v + (Br? — 1) + 2(pr + N)r?

+[(4c3r?® — deor — 2hr + 8M\% + 6pr°) /v cos ¢

+[(5¢3r® — 8cor — 4hr + 10Ar% + 3ks + 6pr3) /v?] cos? o

+[(2¢2r% — 4cor — 2hr + A\r? + 2k‘f +2pr3) /3] cos® o = 0. (66)
Becausev is finite for a torus then the above equation holds if and dintiie

coefficients of{1, cos gp, cos? p, cos® p} vanish. It follows thaAr? = (4rcy —
r2c3) — 3k‘f + 2hr, pré = 2k‘f — 2r¢o — hr and

v=1/@—k)/(1—Fy). (67)

Thus a torus with uniform tilting state as shown in Figl 12lamsexact solution
to governing equations of chiral lipid vesicles. The ratfdveo generation radii
satisfies Eq[(87), which increases \/\ﬁi}l Especiallyy = /2 for l?:f = 0, which

leads to the/2 torus of non-tilting lipid molecules [28]. Since this kindl orus

was observed in the experiment [20], tori with> /2 for 0 < l?:f < 1 might also
be observed in some experiments on chiral lipid membranes.

5.3.4. Twisted Ribbons

Here we consider a quasi-exact solution for the governing#ons to describing
equilibrium configurations of chiral lipid membranes witied edges. Two long
enough twisted ribbons with lipid molecules in differedtirtig states are shown
in Fig.[13. Similar to Selc.4l3, a twist ribbon can be exprésse vector form

{ucos ¢, usin g, ap} with |u| < W/2, |p| < oo and|a| = T'//27. Equation[(5lF)

is transformed intd [44]:

l;f <¢uu N Uy + qﬁ@@) N 2hasin 2¢ _

68
u? + a? u? + a? (68)
whereg is the angle betweem and the horizontal.

If we only consider the uniform tilting state, the above dtqprarequiresp = 0 or
7/2. Itis easy to see that = 0 minimizes—h [ 7, d A for o < 0 while ¢ = /2
minimizes —h [ 7mdA for o > 0 becauserm = —acos2¢/(u? + o) [44].
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Figure 13. Long enough twisted ribbons with lipid molecules in diffete
tilting states: (a)m is perpendicular to the edges; @m) parallels the edges.
Arrows represent the projected directidna } of the tilting molecules on the
ribbons’ surface. (Reprint from Ref.[44])

Thus we should také = 0 for « < 0 and¢ = /2 for « > 0. The former
case corresponds to Fig.]13a whereis perpendicular to the edges; the latter
corresponds to Fi§. 13b whene is parallel to the edges. Both for= 0 andr /2,
Eq. (58) leads t@, = 0 for non-vanishinga. Among the boundary conditions
(59)-(62), only EqL(60) is nontrivial, which reduces to

~ ~ kex? — 2k

2\ 2 (T~ nft T AR

A1+ z%)a” — (h—Az)|a| + 20+ 27) 0 (69)
with z = W/2|al. Solutions to this equation exists for proper parametehaisT
there are indeed twist ribbons in two states as shown in Bighey have different
chirality and tilting angles.

6. Summary and Conclusion

In the above discussions, we have presented some thebresa#ts on the Ge-
ometry of membranes, which include the surface theory andti@al method
based on moving frame, the governing equations to descqh#it@ium con-

figurations of various lipid structures derived from theiaon of free energy
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functionals, some analytic solutions to these equatiomstiaeir corresponding

configurations. We only focus on the pure theoretical reseer and miss all ex-
perimental and numerical results related to our topic orctwvigentle readers may
consult Refs.[[3.18,9,13, 17,47 ,/49]51].

Although many theoretical advancements have been achighrertk are still a

lot of challenges waiting for further investigations. Sele&key open questions
among them are listed as follows.

(i) Lipid vesicles of multi-components. Cell membranestegms many kinds of
lipids. At body temperature, different kinds of lipids ulyaeparate into several
lipid domains. Lipid vesicles with two or several domaingdaeen investigated
from experimental and theoretical leveld [3[10,15,4149%2]. However, there is
still lack of strictly exact solutions to the governing etjaas [41[45] describing
the vesicles with multi-domains.

(i) Other solutions on the shape equations of lipid memésanWe have only
found a few analytic solutions to the governing equationdiél structures.
Whether are there other solutions, in particular to the Bstpequationd (20) and
(22)? Or can we prove that there is no other analytic form gixttee solutions
that we have mentioned?

(iif) Generalized boundary conditions for open lipid merres. Although we
have investigated the boundary conditions of lipid membsawith free edges,
there are still other kind cases, such as confined edgesatdimes, and so on.
Can we develop a generalized variational principle cogesinch cases?

(iv) Non-orientable membranes. All membranes that we hawsidered are ori-
entable membranes. How can we deal with the non-orientablabranes, such
as Mobius band [56]?
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