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GEOMETRY OF MEMBRANES

Z. C. TU

June 14, 2011

Abstract. This review reports some theoretical results on the Geometry of mem-
branes. The governing equations to describe equilibrium configurations of lipid
vesicles, lipid membranes with free edges, and chiral lipidmembranes are derived
from the variation of free energies of these structures. Some analytic solutions to
these equations and their corresponding configurations arealso shown.

1. Introduction

Membranes are very crucial to living organisms. They are thebarriers of cells
and ensure cells to be relatively isolated individuals but still able to exchange
some materials between the inner sides and outer surroundings through specific
ways due to the fancy properties of membranes. Membranes usually consist of
lipid bilayers mosaicked various kinds of proteins. They are also the key factors
to determine shapes of some kinds cells. In particular, the biconcave discoidal
shape of red blood cells is regarded as a result of minimizingthe free energy of
membranes under the area and volume constraints [4,11] because red blood cells
have no complex inner structures. The equilibrium configurations of membranes
have attracted much attention of mathematicians and physicists [18,31,33,37,45].
A membrane is thought of as a 2-dimensional (2D) smooth surface in Euclidean
spaceE3 because its thickness is much smaller than its lateral dimension. The
first step to investigate configurations of membranes is constructing a free en-
ergy functional by consideration of symmetry. Then the governing equations to
describe the equilibrium configurations can be derived by variation of the free en-
ergy with some constraints. The next task is seeking for solutions to satisfy the
governing equations and comparing the results with typicalexperiments.

In this review, we will present some purely theoretical results on Geometry of
membranes. For simplicity, we merely focus on structures oflipid membranes
and only select the theoretical problems that both physicists and mathematicians
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are interested in. The governing equations to describe equilibrium configurations
of lipid structures are derived. Several solutions to theseequations and their cor-
responding geometries are also investigated. The rest of this review is organized
as follows. In Sec. 2, we give a brief introduction to preliminary in mathemat-
ics and physics including surface theory and variational method based on moving
frame, and Helfrich’s model of lipid bilayer. In Sec. 3, we derive a shape equation
that describes equilibrium configurations of lipid vesicles — closed lipid bilay-
ers. Then we discuss some analytic solutions and their corresponding configura-
tions which include surfaces of constant mean curvature, torus, biconcave discoid,
cylinder-like vesicles, and so on. In Sec. 4, we investigatea lipid membrane with
free edge(s). The shape equation and boundary conditions describing equilibrium
configurations of the membrane are derived. Then we discuss the compatibility
between the shape equation and boundary conditions, and verify five theorems of
non-existence. In Sec. 5, we construct the free energy functional of chiral lipid
membranes in terms of symmetric argument and then derive thegoverning equa-
tions to describe their equilibrium configurations by variational method. Some
analytic solutions and their corresponding configurationsare also shown. In the
last section, we give a brief summary and a list of related open questions.

2. Preliminary in Mathematics and Physics

In order to continue our discussion, we first introduce several key mathematical
and physical concepts and tools that will be used in the following sections.

2.1. Surface Theory Based on Moving Frame

2.1.1. Moving Frame Method

A membrane can be regarded as a smooth orientable surface embedded inE3. The
properties of surface such as mean curvature and Gaussian curvature determine
the shape of membrane. As shown in Fig. 1, each point on surface M can be
represented a position vectorr. At that point we construct three unit orthonormal
vectorse1, e2, ande3 with e3 being the normal vector of surfaceM at pointr.
The set of right-handed orthonormal triple-vectors{e1, e2, e3} is called a frame
at pointr. Different points on the surface have different vectorsr, e1, e2, ande3,
thus the set{r; e1, e2, e3} is called a moving frame.

Let us imagine a mass point that moves from positionr to its neighbor positionr′

on the surface. The length of the path is denoted by∆s. Then we can define the
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Figure 1. The moving frame on a surface.

differentiation of the frame as

dr = lim
∆s→0

(r′ − r) = ω1e1 + ω2e2, (1)

and
dei = lim

∆s→0
(e′i − ei) = ωijej, (i = 1, 2, 3) (2)

whereω1, ω2, andωij (i, j = 1, 2, 3) are 1-forms, and ‘d’ is the exterior differ-
ential operator [7]. The 1-formωij is ant-symmetric with respect toi andj, that
is ωij = −ωji. Here and in the following contents without special statements, the
repeated subscripts represent summation from 1 to 3. Additionally, the structure
equations of the surface can be expressed as [7]:

dω1 = ω12 ∧ ω2

dω2 = ω21 ∧ ω1 (3)

dωij = ωik ∧ ωkj (i, j = 1, 2, 3),

and
(

ω13

ω23

)

=

(

a b
b c

)(

ω1

ω2

)

, (4)

where ‘∧’ represents the wedge production between two differentialforms. The

matrix

(

a b
b c

)

is the representation matrix of the curvature tensor. Its trace
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and determinant are two invariants under the coordinate rotation arounde3 which
are denoted by

2H = a+ c and K = ac− b2. (5)

H andK are called the mean curvature and Gaussian curvature, respectively.
They determine the shape of the surface and can be expressed as2H = −(1/R1+
1/R2) andK = 1/R1R2 with two principal curvature radiiR1 andR2 at each
point on the surface.

Now consider a curve on surfaceM. Its tangent vector is denoted byt. Letφ be
the angle betweent ande1 at the same point. Then the geodesic curvaturekg, the
geodesic torsionτg, and the normal curvaturekn along the direction oft can be
expressed as [41]:

kg = (dφ+ ω12)/ds

τg = b cos 2φ+ (c− a) cosφ sinφ (6)

kn = a cos2 φ+ 2b cosφ sinφ+ c sin2 φ,

whereds is the arc length element alongt. If t aligns withe1, thenφ = 0,
kg = ω12/ds, τg = b, andkn = a. In the principal frame, the geodesic torsion
and normal curvature can be expressed as

kn = −cos2 φ

R1

− sin2 φ

R2

, τg = (1/R1 − 1/R2) cos φ sinφ. (7)

2.1.2. Stokes’ theorem and related identities

Stokes’ theorem is a crucial theorem in differential geometry, which reads
∮

∂D

ω =

∫

D

dω, (8)

whereD is a domain with boundary∂D. ω is a differential form on∂D. In
particular,

∫

D
dω = 0 for a closed domainD.

From Stokes’ theorem, we can derive several identities listed as follows [41,45].

(i) For smooth functionsf andh on 2D subdomainD ⊆ M,
∫

D

(fd∗dh− hd∗df) =
∮

∂D

(f∗dh− h∗df)
∫

D

(fd∗d̃h− hd∗d̃f) =
∮

∂D

(f∗d̃h− h∗d̃f) (9)
∫

D

(fd∗̃d̃h− hd∗̃d̃f) =
∮

∂D

(f ∗̃d̃h− h∗̃d̃f),
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where∗ is Hodge star operator satisfying∗ω1 = ω2 and∗ω2 = −ω1. d̃ and
∗̃ are generalized differential operator and generalized Hodge star which satisfy
d̃f = f1ω13 + f2ω23 and∗̃d̃f = f1ω23 − f2ω13 if df = f1ω1 + f2ω2 [41,42].

(ii) If u andv are two vector fields defined on 2D subdomainD ⊆ M, then [43]

∫

D

(u · d∗dv− v · d∗du) =
∮

∂D

(u · ∗dv− v · ∗du)
∫

D

(u · d∗d̃v − v · d∗d̃u) =
∮

∂D

(u · ∗d̃v − v · ∗d̃u) (10)
∫

D

(u · d∗̃d̃v − v · d∗̃d̃u) =
∮

∂D

(u · ∗̃d̃v − v · ∗̃d̃u),

where the ‘dot’ represents the inner product of vectors. Forsimplicity, Eqs.(9)
and (10) are still called Stokes’ theorem in this review. They are widely used in
the variational process.

Additionally, we can also define the gradient, curl, divergent, Laplace operators,
etc. on the surface in terms of the differential operators and Hodge stars. They are
summarized as follows [44,45]:

(∇× u) dA = d(u · dr), (∇ · u) dA = d(∗u · dr)
(∇̃ · u) dA = d(∗̃u · d̃r), (∇̄ · u) dA = d(∗u · d̃r)
∇f · dr = df, ∇̃f · dr = d̃f

(∇2f) dA = d ∗ df, (∇ · ∇̄f) dA = d ∗ d̃f
(∇ · ∇̃f) dA = d∗̃d̃f
(u · ∇f) dA = u · dr ∧ ∗df (11)

(u · ∇̄f) dA = u · dr ∧ ∗d̃f
(u · ∇̃f) dA = u · dr ∧ ∗̃d̃f
(∇2

u) dA = d ∗ du, (∇u) · dr = du

(∇u : ∇v)dA = du∧̇dv
S · dr = −ω12, (∇ · S)dA = −d ∗ ω12,

wheredA = ω1 ∧ ω2 andS are the area element and spin connection of the sur-
face, respectively.̇∧ represents calculating dot production and wedge production
simultaneously.
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2.2. Helfrich’s Model

In 1973, Helfrich proposed a spontaneous curvature model todescribe the free
energy of lipid membranes by analogy with a bent box of liquidcrystal in Smectic
A phase [11]. The free energy is in fact a functional defined inthe space of shapes
of membranes, which reads

FH =

∫

M

[

kc
2
(2H + c0)

2 + k̄K

]

dA, (12)

whereM,H, andK represent the membrane surface, mean curvature, and Gaus-
sian curvature, respectively.kc andk̄ are two bending moduli. The former should
be positive, while the latter can be negative or positive forlipid membranes.c0
is called spontaneous curvature, which reflects the asymmetrically chemical or
physical factors between two leaves of lipid bilayers.

On the other hand, the spontaneous curvature model can also be obtained from
symmetric argument. A lipid membrane can be locally regarded as 2D isotropic
elastic entity. Thus the local free energy densityf should be invariant under ro-
tational transformation around the normal direction of themembrane surface. In
other words, it should be a function ofH andK becauseH andK are the funda-
mental invariants of the surface under rotational transformation. Up to the second
order terms of curvatures, it can be expanded as

fc = A0 +A1H +A2H
2 +A3K, (13)

which can be rewritten as

fc =
kc
2
(2H + c0)

2 + k̄K (14)

with omitting an unimportant constant. This is no other thanthe integrand in
Eq. (12). Therefore, the spontaneous curvature model is of general significance
not only for lipid membranes, but also for other membranes consisting of isotropic
materials. The following discussions are mainly based on Helfrich’s spontaneous
curvature model.

2.3. Variational Method Based on Moving Frame

To obtain governing equations that describe equilibrium configurations of lipid
membranes, we need to minimize the free energy. That is, we should calculate
the variation of functionals defined in the space of shapes ofmembranes. In this
space, each shape might be expressed as a function, but the definitional domain
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is not a fixed planar domain. It is difficult to deal with this case by using the
traditional calculus of variation. Now we will introduce the variational method
based on the moving frame developed by the present author andOu-Yang [40,41,
45], which is available to deal with variational problems onsurfaces.

Any infinitesimal deformation of a surface can be achieved bya displacement
vector

δr ≡ v = Ωiei (15)

at each point on the surface, whereδ can be understood as a variational operator.
The frame is also changed because of the deformation of the surface, which is
denoted as

δei = Ωijej (i = 1, 2, 3), (16)

whereΩij = −Ωji (i, j = 1, 2, 3) corresponds to the rotation of the frame due to
the deformation of the surface. Fromδdr = dδr, δdej = dδej , and Eqs. (1)–(4),
we can derive

δω1 = dv · e1 − ω2Ω21 = dΩ1 +Ω2ω21 +Ω3ω31 − ω2Ω21

δω2 = dv · e2 − ω1Ω12 = dΩ2 +Ω1ω12 +Ω3ω32 − ω1Ω12 (17)

δωij = dΩij +Ωilωlj − ωilΩlj

dv · e3 = dΩ3 +Ω1ω13 +Ω2ω23 = Ω13ω1 +Ω23ω2.

These equations are the essential equations of the variational method based on the
moving frame. With them as well as Eqs. (4) and (5), we can easily derive

δdA = (divv − 2HΩ3)dA

δ(2H) = [∇2 + (4H2 − 2K)]Ω3 +∇(2H) · v (18)

δK = ∇ · ∇̃Ω3 + 2KHΩ3 +∇K · v.

Using the above equations (3)-(6), (9)-(11), (17) and (18),we can deal with almost
all variational problems on surfaces.

3. Lipid Vesicles

Most of lipid molecules are amphiphiles with a hydrophilic head group and two
hydrophobic hydrocarbon tails. When a quantity of lipid molecules disperse in
water, they will assemble themselves into a bilayer vesicleas depicted in Fig. 2
due to hydrophobic forces. In this section, we will theoretically understand vari-
ous configurations of lipid vesicles.
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Figure 2. A cartoon of lipid vesicle.

3.1. Shape Equation to Describe Equilibrium Configurations

A lipid vesicle can be represented as a closed surfaceM. Its equilibrium shape
is determined by minimizing Helfrich’s free energy (12) under the constraints of
constant area and volume because experiments reveal that the area of lipid mem-
branes are almost incompressible and the membranes are impermeable for the
solutions in both sides of the membranes. Thus we can introduce two Lagrange
multipliers λ andp to replace these two constraints, and then minimize the fol-
lowing functional

F =

∫

M

[

kc
2
(2H + c0)

2 + k̄K

]

dA+ λA+ pV, (19)

whereM, A andV represent the membrane surface, total area of the vesicle and
volume enclosed by the vesicle.λ andp can also be understood as the apparent
surface tension and osmotic pressure of the lipid vesicle.

The Euler-Lagrange equation of functional (19) can be derived by using the vari-
ational method presented in Sec. 2, which reads [26,27,41]

p̃− 2λ̃H + (2H + c0)(2H
2 − c0H − 2K) + 2∇2H = 0 (20)

with reduced parameters̃p = p/kc and λ̃ = λ/kc. This formula is called the
shape equation because it describes the equilibrium shapesof lipid vesicles and
represents the force balance along the normal direction of membrane surfaces.

Now let us consider an axisymmetric vesicle generated by a planar curve shown
in Fig. 3. Rotate the curve aroundz− axis and then mirror with respect to the hor-
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Figure 3. The generation curve for an axisymmetric vesicle.

izontal plane.ρ is the revolving radius, andψ is the angle between the tangent of
the curve and the horizontal plane. That is,dz/dρ = tanψ. Through simple cal-
culations, we can obtain−2H = h ≡ sinψ/ρ + (sinψ)′, K = sinψ(sinψ)′/ρ,
and∇2(2H) = −(cosψ/ρ)(ρ cos ψh′)′,where the ‘prime’ represents the deriva-
tive with respect toρ. Substituting these relations into Eq. (20), we derive

(h− c0)

(

h2

2
+
c0h

2
− 2K

)

− p̃− λ̃h+
cosψ

ρ
(ρ cosψh′)′ = 0, (21)

The equivalent form of this equation is first derived by Hu andOu-Yang [14]. The
shape equation (21) of axisymmetric vesicles is a third-order differential equation.
Following Zheng and Liu’s work [54], we can transform it intoa second order
differential equation

cosψh′ + (h− c0) sinψψ
′ − λ̃ tanψ+

2η0 − p̃ρ2

2ρ cosψ
− tanψ

2
(h− c0)

2 = 0 (22)

with an integral constantη0. It is found that the shape equation of axisymmetric
vesicles obtained by Hu and Ou-Yang degenerates into that derived by Seifertet
al. [36] whenη0 = 0 in Eq. (22) or for vesicles with spherical topology free of
singular points [32,54].

3.2. Analytic Solutions and Corresponding Configurations

Now we will show several analytic solutions to shape equations (20) or (22) of
lipid vesicles that we have known till now. They correspond to surfaces of constant
mean curvature, torus, biconcave discoid, and so on. Most ofthese solutions are
found by Ou-Yang and his coworkers. We will see that only sphere, torus, and
biconcave discoid can correspond to lipid vesicles.
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3.2.1. Surfaces of Constant Mean Curvature

Obviously, surfaces of constant mean curvature (includingsphere, cylinder, and
unduloid shown in Fig. 4) can satisfy the shape equation. First, let us consider a
spherical surface with radiusR. ThenH = −1/R andK = 1/R2. Substituting
them into Eq. (20), we derive

p̃R2 + 2λ̃R− c0(2− c0R) = 0. (23)

This equation gives the relation between sphere radiusR, spontaneous curvature
c0, reduced osmotic pressurẽp, and reduced surface tensionλ̃.

Figure 4. Surfaces of constant mean curvature: sphere (left), cylinder (mid-
dle), and unduloid (right).

Next, H = −1/2R andK = 0 for a cylindrical surface with radiusR. Then
shape equation (20) requires

2p̃R3 + 2λ̃R2 − 1 + c20R
2 = 0. (24)

For other surfaces of constant mean curvature such as unduloid, H is a constant
butK is not a constant. In terms of shape equation (20), we obtain

H = −c0/2 (25)

andp̃ = −λ̃c0.

Note that cylindrical surface and unduloid are in fact not closed surfaces. Alexan-
drov proved that “An embedded surface (no self-intersection) with constant mean
curvature inE3 must be a spherical surface” [1]. Thus we can only observe one
kind of vesicles of constant mean curvature — sphere.
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3.2.2. Torus

As shown in Fig. 5, A torus is a revolution surface generated by a circle with
radiusr rotating around an axis in the same plane of the circle. The revolving
radiusR should be larger thanr. The torus can be expressed as vector form
{(R + r cosϕ) cos θ, (R + r cosϕ) sin θ, r sinϕ}. Through simple calculations,
we have2H = −(R+2r cosϕ)/r(R+ r cosϕ) andK = cosϕ/r(R+ r cosϕ).
Substituting them into Eq. (20), we derive

[(2c20r
2 − 4c0r + 4λ̃r2 + 2p̃r3)/ν3] cos3 ϕ

+[(5c20r
2 − 8c0r + 10λ̃r2 + 6p̃r3)/ν2] cos2 ϕ

+[(4c20r
2 − 4c0r + 8λ̃r2 + 6p̃r3)/ν] cosϕ

+2/ν2 + (c20r
2 − 1) + 2(p̃r + λ̃)r2 = 0 (26)

with ν = R/r. If ν is finite, then Eq. (26) holds if and only if the coefficients of
{1, cosϕ, cos2 ϕ, cos3 ϕ} vanish. It follows2λ̃r = c0(4− c0r), p̃r2 = −2c0 and

ν = R/r =
√
2. (27)

That is, there exists a lipid torus with the ratio of its two generation radii being√
2 (called

√
2 torus by Ou-Yang [28]), which was confirmed in the experiment

[20]. It is also found that nonaxisymmetric tori [35] constructed from conformal
transformations of

√
2 torus also satisfy the shape equation.

Figure 5. Torus (left) and its generation curve (right).

To check the consistency, we need also verify that the above toroidal solution can
indeed satisfy shape equation (22) of axisymmetric vesicles. It is not hard to see√
2 torus can be generated from a curve expressed as

sinψ = (ρ/r)±
√
2. (28)

Substituting it into Eq. (22), we arrive at2λ̃r = c0(4 − c0r), p̃r2 = −2c0 and
η0 = −1/r 6= 0.



12

3.2.3. Biconcave Discoid

For0 < c0ρB < e, the parameter equation
{

sinψ = −c0ρ ln(ρ/ρB)
z = z0 +

∫ ρ

0
tanψdρ

(29)

corresponds to a planar curve shown in Fig. 6. Substituting it into Eq. (22), we
havep̃ = 0, λ̃ = 0, andη0 = 2c0 6= 0. That is, a biconcave discoid generated
by revolving this planar curve aroundz-axis can satisfy the shape equation of
vesicles. This result can give a good explanation to the shape of human red blood
cells under normal physiological conditions [9,21,23].

Figure 6. Biconcave discoid (left) and its generation curve (right).

A small comment is thatη0 = 2c0 6= 0 reflects the singularity at two poles of
the biconcave discoid. Whether does this singularity existin real red blood cells?
What is the biological meaning of this singularity? Or does there exist a normal
solution to the shape equation that can also explain the shape of red blood cells?
These open questions need further discussions.

3.2.4. Unduloid-Like and Cylinder-Like Surfaces

If we only concern solutions to the shape equation, two casesare also widely
discussed. The first case [19, 22] is an axisymmetric surfacegenerated by planar
curve satisfying

sinψ =
1

ρmc0

(

ρ

ρm
+
ρm
ρ

)

−
√

4

ρ2mc
2
0

− 2, (0 < ρmc0 < 4/3). (30)

The generated surface abides by the shape equation withp̃ = −2c0ρ
4
m, λ̃ =

2/ρ2m − c20/2, andη0 = 2c0 − 3/c0ρ
2
m. This surface has the unduloid-like shape

but with nonconstant mean curvature.
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The second one is a cylinder-like surface generated by a planar curve translating
along the normal of the plane. If we denote the curvature of the curve asκ, then
the geometric quantities of the generated surface can be expressed as2H = −κ,
K = 0, and∇2(2H) = −κ̈, where the ‘dot’ aboveκ represents the derivative
with respect to the arc length of the curve. Thus shape equation (20) degenerates
into [2,48,53]:

p̃+ λ̄κ+ κ3/2− κ̈ = 0 (31)

with λ̄ = λ̃+ c20/2. The above equation is integrable, which results in

κ̇2 = ξ0 + 2p̃κ+ λ̄κ2 − κ4/4 (32)

with an integral constantξ0. This equation can be further solved in terms of
Elliptic functions [2,48,53,55].

It is necessary to note that these two cases do not correspondto real vesicles
because they are not closed surfaces.

4. Lipid Membranes with Free Edges

The opening-up process of liposomal membranes by talin [34]was observed,
which gives rise to the study of equilibrium equation and boundary conditions
of lipid membranes with free exposed edges. This problem wastheoretically in-
vestigated by Capovillaet al. [5] and Tuet al. [40] in terms of different methods.
In this section, we will present these theoretical results and subsequent advance-
ments.

4.1. Shape Equation and Boundary Conditions to Describe Equilibrium Con-
figurations

As shown in Fig. 7, a lipid membrane with a free edge can be expressed as an
open smooth surface (M) with a boundary curve (C) in geometry. Because the
free exposed edge is energetically unfavorable, we assign the line tension (energy
cost per length) to beγ > 0. Then the free energy functional that we need to
minimize can be expressed as

F =

∫

M

[

kc
2
(2H + c0)

2 + k̄K

]

dA+ λA+ γL, (33)

whereL is the total length of the free edge.
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Figure 7. An open smooth surface (M) with a boundary curve (C).
{e1, e2, e3} forms the frame at some point on the surface.{t,b, e3} also
forms the right-handed frame for the point inC such thatt is the tangent of
C andb points to the side that the surface is located in.

By using the variational method introduced in Sec. 2, we can arrive at a shape
equation [40]

(2H + c0)(2H
2 − c0H − 2K)− 2λ̃H +∇2(2H) = 0, (34)

and three boundary conditions [40]

[(2H + c0) + k̃κn]
∣

∣

∣

C
= 0, (35)

[−2∂H/∂b+ γ̃κn + k̃τ̇g]
∣

∣

∣

C
= 0, (36)

[(1/2)(2H + c0)
2 + k̃K + λ̃+ γ̃κg]

∣

∣

∣

C
= 0, (37)

whereλ̃ ≡ λ/kc, k̃ ≡ k̄/kc, andγ̃ ≡ γ/kc are the reduced surface tension, re-
duced bending modulus, and reduced line tension, respectively. κn, κg, andτg
are the normal curvature, geodesic curvature, and geodesictorsion of the bound-
ary curve, respectively. The ‘dot’ represents the derivative with respect to the arc
length of the edge. Equation (34) expresses the normal forcebalance of the mem-
brane. Equations (35)–(37) represent the force and moment balances at each point
in curveC. Thus, in general, the above four equations are independentof each
other and available for an open membrane with several edges.

Now we consider axisymmetric membranes. When a planar curveAC shown
in Fig.8 revolves aroundz axis, an axisymmetric surface is generated. Letψ
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r

z

y

C

A

Figure 8. Outline of an axisymmetric open surface. Each open surface can
be generated by a planar curve AC rotating around z axis.ψ is the angle
between the tangent line and the horizontal plane.

represent the angle between the tangent line and the horizontal plane. Each point
in the surface can be expressed as vectorr = {ρ cos φ, ρ sinφ, z(ρ)}, whereρ
andφ are the radius and azimuth angle that the point corresponds to. Introduce a
notationσ such thatσ = 1 if t is parallel to∂r/∂φ, andσ = −1 if t is antiparallel
to ∂r/∂φ in the boundary curve generated by point C. The above equations (34)–
(37) are transformed into

(h− c0)

(

h2

2
+
c0h

2
− 2K

)

− λ̃h+
cosψ

ρ
(ρ cosψh′)′ = 0, (38)

[

h− c0 + k̃sinψ/ρ
]

C
= 0, (39)

[

−σ cosψh′ + γ̃sinψ/ρ
]

C
= 0, (40)

[

1

2
(h− c0)

2 + k̃K + λ̃− σγ̃
cosψ

ρ

]

C

= 0, (41)

with h ≡ sinψ/ρ + (sinψ)′ andK ≡ sinψ(sinψ)′/ρ. The ‘prime’ represents
the derivative with respect toρ.

Shape equation (38) is integrable, which reduces to a secondorder differential



16

equation

cosψh′ + (h− c0) sinψψ
′ − λ̃ tanψ +

η0
ρ cosψ

− tanψ

2
(h− c0)

2 = 0 (42)

with an integral constantη0 [46]. This equation is equivalent to Eq. (22) with
zero osmotic pressure. The configuration of an axisymmetricopen lipid mem-
brane should satisfy shape equation (42) and boundary conditions (39)–(41). In
particular, the points in the boundary curve should satisfynot only the boundary
conditions, but also shape equation (42) because they also locate in the surface.
That is, Eqs. (39)-(41) and (42) should be compatible with each other in the edge.
Substituting Eqs. (39)-(41) into (42), we derive the compatibility condition [46]
to be

η0 = 0. (43)

It is a necessary (not sufficient) condition for existence ofaxisymmetric open
membranes. Under this condition, the shape equation is reduced to

cosψh′ + (h− c0) sinψψ
′ − λ̃ tanψ − tanψ

2
(h− c0)

2 = 0, (44)

while three boundary conditions are reduced to two equations, i.e. Eqs. (39) and
(41).

4.2. Theorems of Non-Existence

Now our task is to find analytic solutions that satisfy both the shape equation and
boundary conditions. An obvious but trivial one is a circular disk with radiusR.
In this case, Eqs. (34)–(37) degenerate to

λ̃R+ γ̃ = 0. (45)

Can we find nontrivial analytic solutions? We will prove several theorems of
non-existence in this subsection, which imply that it is almost hopeless to find
nontrivial analytic solutions.

Theorem 1 There is no open membrane being a part of a spherical vesicle.

Proof. For a sphere with radiusR, we can calculateH = −1/R, κn = −1/R
andτg = 0 in terms of Eq. (6) becausea = c = −1/R andb = 0 for a sphere.
Boundary condition (36) cannot be abided by. Thus an open membrane cannot be
a part of a spherical vesicle.
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Theorem 2 There is no open membrane being a part of a cylindrical surface.

Proof. For any line element on the surface of a cylinder with radiusR, we can
calculateκn = − cos2 θ/R from Eq. (7) whereθ is the angle between the line
element and the circumferential direction. Additionally,H = −1/R is a constant.
If k̃ = 0, then boundary condition (36) results inκn = 0, that isθ = π/2. The
line along this direction is not a closed curve, and so cannotbe as an edge of a
membrane. If̃k 6= 0, then boundary condition (35) results inκn = (c0− 1/R)/k̃,
which impliesθ should be a constant. The unique closed curve is a circle, i.e.
θ = 0 andκn = −1/R. But τg = 0 if θ = 0, then contradicts with boundary
condition (36). Thus an open membrane cannot be a part of a spherical surface.

Theorem 3 There is no open membrane being a part of a curved surface with
constant mean curvature.

Proof. Two special surfaces (sphere and cylinder) with constant mean curvature
are discussed in the above theorems. Now we only need to investigate surfaces
with constantH but nonconstantK. From shape equation of open membranes,
we derive two possible cases: (i)H = −c0/2 6= 0 andλ̃ = 0; (ii) H = c0 = 0
andλ̃ 6= 0.

In the former case, if̃k = 0, then boundary conditions (36) and (37) result in

κn = κg = 0. Thus the curvature of boundary curve isκ =
√

κ2n + κ2g = 0. That

is, this curve is a straight line which is not closed curve. Ifk̃ 6= 0, then boundary
conditions (35) and (36) results inκn = 0 andτg = constant. Using Eq. (7),
we derive the principal curvatures for the points in the curve are constant. Then
Eq. (37) requiresκg = constant. That is, the curvature and torsion are constant
in the curve. The unique closed curve is a circle. Butτg = 0 for a circle. Letc1
andc2 represent the two principal curvatures,θ is the angle between the tangent
of the curve and one principal direction at each point in the curve. Then we have
two equations:κn = c1 cos

2 θ+ c2 sin
2 θ = 0 andτg = (c2 − c1) sin θ cos θ = 0.

Substituting these two equations andK = c1c2 into Eq. (37), we obtainκg = 0.

Thenκ =
√

κ2n + κ2g = 0, which contradicts with the preassumption of a circle.

In the latter case,H = c0 = 0, similar to the proof in the former one, it also
leads to a contradiction. Thus there is no open membrane being a part of a curved
surface with constant mean curvature.

Theorem 4 There is no open membrane being a part of Willmore surface.
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Proof. Let us consider the scaling transformationr → Λr, where the vectorr
represents the position of each point in the membrane andΛ is a scaling parameter
[6]. Under this transformation, we haveA → Λ2A, L → ΛL, H → Λ−1H, and
K → Λ−2K. Thus, Eq. (33) is transformed into

F (Λ) =

∫

M

[(kc/2)(2H)2 + k̄K]dA

+ 2kcc0Λ

∫

M

HdA+ (λ+ kcc
2
0/2)Λ

2A+ γΛL. (46)

The equilibrium configuration should satisfy∂F/∂Λ = 0 whenΛ = 1. Thus we
obtain

2c0

∫

M

HdA+ (2λ̃+ c20)A+ γ̃L = 0. (47)

This equation is an additional constraint for open membranes.

Willmore surfaces satisfy the special form of Eq. (20) with vanishingλ̃ andc0
[50]. BecausẽγL > 0, thus the constraint (47) cannot be satisfied whenλ̃ = 0
andc0 = 0. That is, there is no open membrane being a part of Willmore surface.

Figure 9. Schematics of several impossible open membranes with free
edges: parts of sphere, cylinder, unduloid, torus, biconcave discodal surface
(from left to right).

Corollary There is no open membrane being a part of
√
2 torus.

Proof. Substituting
√
2 torus into Eq. (34), we obtainc0 = 0 andλ̃ = 0. That is,√

2 torus is a Willmore surface. In terms of theorem 4, we arrive at this corollary.

Theorem 5 There is no axisymmetric open membrane being a part of a biconcave
discodal surface generated by a planar curve expressed bysinψ = −c0ρ ln(ρ/ρB).

Proof. A biconcave discodal surface [21, 23] generated by a planarcurve ex-
pressed bysinψ = −c0ρ ln(ρ/ρB) with non-vanishing constantsc0 andρB. To
avoid the singularity at two poles, we may dig two holes around the poles. Sub-
stituting this equation into shape equation (42), we obtainλ̃ = 0 andη0 = 2c0.
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That is, the biconcave discodal surface can be a solution to the shape equation.
However,η0 = 2c0 6= 0 contradicts to compatibility condition (43). Thus there is
no axisymmetric open membrane being a part of this biconcavediscodal surface.

In Fig. 9, we show several impossible open membranes with free edges in terms
of the above theorems. These theorems suggest that it is hopeless to find exactly
analytic solutions to the shape equation and boundary conditions of open lipid
membranes. Quasi-exact solutions or numerical simulations are highly appreci-
ated.

4.3. Quasi-Exact Solutions

Here the quasi-exact solution is defined as a surface with free edge(s) such that
the points on that surface exactly satisfy the shape equation, and most of points
in the edge(s) abide by boundary conditions. In fact, the proves to theorems 2
and 3 implies two possible solutions as shown in Fig. 10. One is a straight stripe
along the axial direction of cylinder, another is a twist ribbon which is a part of a
minimal surface (H=0).

Figure 10. Schematics of two quasi-exact solutions: straight stripe along
axial direction of cylinder (left) and twist ribbon which isa part of a minimal
surface (right).

Let we consider a long enough straight stripe along the axialdirection of cylinder
that satisfies shape equation (34), that is,λ̃ = (1− c20R

2)/2R2. The long enough
configuration ensure us to omit the boundary of two ends. The lateral edges are
straight lines which haveκn = κg = τg = 0. Thus boundary conditions (35) and
(36) are trivial. The third boundary condition results inλ̃ = (1 − c0R)

2/2R2.
Thus we arrive at̃λ = 0 andR = 1/c0. That is, a long enough straight stripe
along the axial direction of cylinder withR = 1/c0 is a quasi-exact solution.

Next, a twisted ribbon with pitchT and width2u0 can be expressed as vector form
{u cosϕ, u sinϕ,αϕ} with |u| ≤ u0, |ϕ| < ∞ and |α| = T/2π. From simple
calculations, we have

H = 0, K = −α2/(u2 + α2)2 (48)
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for the points on the surface, and

κn = 0,K = −α2/(u20 + α2)2

κg = u0/(u
2
0 + α2) (49)

τg = α/(u20 + α2)

for the points on the edges.

It is easy to see that equation (48) can satisfy shape equation (34) whenc0 = 0.
Then equation (49) naturally validates boundary conditions (35) and (36). The
last boundary condition (37) leads tõλ = [k̃α2 − γ̃u0(u

2
0 + α2)]/(u20 + α2)2,

which can be satisfied by proper parametersλ̃, k̃, γ̃, u0 andα. That is, the twist
ribbon is indeed a quasi-exact solution.

5. Chiral Lipid Membranes

In fact, our above discussions only concern lipid membraneswhere lipid molecules
are in Smectic A phase. In this phase, lipid molecules almostpoint to the normal
direction of the membrane surface. However, there are also many kinds of chi-
ral lipids in cell membranes. At body temperature, chiral lipids usually form
SmecticC∗ phase. They are tilting from the normal direction in a constant angle.
It is necessary to develop Helfrich’s spontaneous curvature model introduced in
Sec. 2.2 to cover the SmecticC∗ phase. Based on symmetric argument or Frank
energy in the theory of liquid crystal, many theoretical models and results were
achieved [12, 16, 25, 29, 30, 38, 39]. These theoretical models contain much com-
plicated terms and many parameters, which make it is impossible to derive the ex-
act governing equations for describing equilibrium configurations of chiral lipid
membranes. Here we will discuss a simplified version proposed by the present
author and Seifert [44]. It is found that this concise theorycan still explain most
of experimental phenomena.

5.1. Constructing the Free Energy

The free energy density for a chiral lipid membrane are supposed to consist of the
following contributions.

(i) The bending energy per area is still taken as Helfrich’s form (14). That is, we
neglect the anisotropic effect of lipid molecules’ tiltingon the bending moduli.

(ii) The energy per area originating from the chirality of tilting molecules has the
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Figure 11. Right-handed orthonormal frame{e1, e2, e3} at any point in a
surface wheree3 is the normal vector of the surface. (a) Surface without
boundary curve. (b) Surface with boundary curve wheret is the tangent
vector of the boundary curve, andb, in the tangent plane of the surface, is
perpendicular tot. (Reprint from Ref. [44])

form [29]

fch = −hτm, (50)

whereh reflects the strength of molecular chirality. Without losing the generality,
here we only discuss the case ofh > 0. τm is the geodesic torsion along the unit
vectorm at each point. Herem represents the projected direction of the lipid
molecules on the membrane surface. If we take a right-handedorthonormal frame
{e1, e2, e3} as shown in Fig. 11,m can be expressed asm = cosφe1 + sinφe2,
whereφ is the angle betweenm ande1. then geodesic torsionτm and normal
curvatureκm alongm can be expressed as the similar form of Eq. (6).

(iii) The energy per area due to the orientational variationis taken as

fov = (kf/2)[(∇×m)2 + (∇ ·m)2], (51)

wherekf is a constant in the dimension of energy. This is the simplestterm of
energy cost due to tilting order invariant under the coordinate rotation around the
normal of the membrane surface. By defining a spin connectionfield S such that
∇× S = K, one can derive(∇×m)2 + (∇ ·m)2 = (∇φ−S)2 through simple
calculations [24].

The total free energy density adopted in the present paper,G = fc + fch + fov,
has the following concise form:

G =
kc
2
(2H + c0)

2 + k̄K − hτm +
kf
2
v
2, (52)
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with v ≡ ∇φ−S. This special form might arguably be the most natural and con-
cise construction including the bending, chirality and tilting order, for the given
vector fieldm and normal vector fielde3.

5.2. Governing Equations to Describe Equilibrium Configurations

The free energy for a closed chiral lipid vesicle may be expressed as

F =

∫

M

GdA+ λA+ pV, (53)

whereA is the area of the membrane andV the volume enclosed by the vesicle.
λ andp are two multipliers to implement area and volume constraints.

Using the variational method mentioned in Sec.2, we can obtain two governing
equations to describe equilibrium configurations [44] as

2h̃(κm −H)− k̃f∇2φ = 0 (54)

and

2∇2H + (2H + c0)(2H
2 − c0H − 2K)− 2λ̃H + p̃

+h̃[∇ · (m∇×m) +∇× (m∇ ·m)]

+k̃f [(κv −H)v2 −∇v : ∇e3] = 0 (55)

with reduced parameters̃h = h/kc, k̃f = kf/kc, p̃ = p/kc, andλ̃ = λ/kc. κm
andκv are the normal curvature along the directions ofm andv, respectively.
When writing Eq. (54), we have selected the proper gauge suchthat∇ · S = 0, or
else∇2φ should be replaced with∇2φ−∇ · S. Additionally, we do not consider
singular points for closed vesicles different from toroidal topology.

Consider a chiral lipid membrane with a free edge as shown in Fig. 11b. Its free
energy can be expressed as

F =

∫

M

GdA+ λA+ γL, (56)

whereA is the area of the membrane andL the total length of the edge.γ repre-
sents the line tension of the edge.

Using the variational method mentioned in Sec.2, we can obtain the governing
equations to describe equilibrium configurations of membrane surfaces as

2h̃(κm −H)− k̃f∇2φ = 0 (57)
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and

2∇2H + (2H + c0)(2H
2 − c0H − 2K)− 2λ̃H

+h̃[∇ · (m∇×m) +∇× (m∇ ·m)]

+k̃f [(κv −H)v2 −∇v : ∇e3] = 0. (58)

Simultaneously, the boundary conditions obeyed by the freeedge are derived as
[44]:

vb = 0, (59)

(1/2)(2H + c0)
2 + k̃K − h̃τm + (k̃f/2)v

2 + λ̃+ γ̃κg = 0, (60)

(2H + c0) + k̃κn − (h̃/2) sin 2φ̄ = 0, (61)

γ̃κn + k̃τ̇g − 2∂H/∂b − h̃(vt +
˙̄φ) sin 2φ̄+ k̃fκnvt = 0, (62)

whereκn, τg andκg are the normal curvature, geodesic torsion, and geodesic
curvature of the boundary curve (i.e., the edge), respectively. vb andvt are the
components ofv in the directions ofb andt, respectively. The ‘dot’ represents the
derivative with respect to arc length parameters. φ̄ is the angle betweenm andt at
the boundary curve. Equations (59)–(62) describe the forceand moment balance
relations in the edge. Thus they are also available for a chiral lipid membrane with
several edges.

5.3. Solutions and Corresponding Configurations

Now we will present some analytic solutions to the governingequations of chiral
lipid membranes.

5.3.1. Sphere

For spherical vesicles of chiral lipid molecules with radiusR, τm is always van-
ishing becausea = c = 1/R andb = 0. Thus the free energy (53) is independent
of the molecular chirality and permits the same existence probability of left- and
right-handed spherical vesicles. This is uninteresting case in practice.

5.3.2. Cylinder

Here we consider a long enough cylinder with radiusR such that its two ends can
be neglected. The cylinder can be parameterized by two variabless andz which
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are the arc length along the circumferential direction and coordinate along axial
direction, respectively. Letφ be the angle betweenm and the circumferential
direction. Then Eqs. (54) and (55) are transformed into [44]:

k̃f (φss + φzz) + (h̃/R) cos 2φ = 0, (63)

and

h̃[2(φ2z − φ2s + φsz) sin 2φ+ (φss − φzz + 4φzφs) cos 2φ] + λ̃/R

+p̃+ (c20 − 1/R2)/2R + k̃f [(φ
2
z − φ2s)/2R + φsz/R] = 0. (64)

where the subscriptss andz represent the partial derivatives respect tos andz,
respectively.

It is not hard to see thatφ = π/4 and2p̃R3 + 2λ̃R2 − 1 + c20R
2 = 0 can satisfy

the above two equations. Thus a cylinder shown in Fig. 12a with uniform tilting
state (tilting angleφ = π/4) is a solution.

Figure 12. Two possible chiral lipid membranes: (a) Cylinder with uniform
tilting state; (b) Torus with uniform tilting state.

5.3.3. Torus

A torus is a revolution surface generated by a cycle with radiusr rotating around
an axis in the same plane of the cycle as shown in Fig. 5. It can be expressed as
vector form{(R + r cosϕ) cos θ, (R + r cosϕ) sin θ, r sinϕ}. Equation (54) is
transformed into [44]:

1

ν + cosϕ

∂2φ

∂θ2
+

∂

∂ϕ

[

(ν + cosϕ)
∂φ

∂ϕ

]

− νh̃r

k̃f
cos 2φ = 0, (65)
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whereφ is the angle betweenm and the latitude of the torus, whileν ≡ R/r is
the ratio between two generated radii of the torus.

The uniform tilting state (φ = −π/4) satisfies Eq. (65) and makes−
∫

hτmdA to
take the minimum. Withφ = −π/4, Eq. (55) is transformed into [44]:

(2− k̃f )/ν
2 + (c20r

2 − 1) + 2(p̃r + λ̃)r2

+[(4c20r
2 − 4c0r − 2h̃r + 8λ̃r2 + 6p̃r3)/ν] cosϕ

+[(5c20r
2 − 8c0r − 4h̃r + 10λ̃r2 + 3k̃f + 6p̃r3)/ν2] cos2 ϕ

+[(2c20r
2 − 4c0r − 2h̃r + 4λ̃r2 + 2k̃f + 2p̃r3)/ν3] cos3 ϕ = 0. (66)

Becauseν is finite for a torus, then the above equation holds if and onlyif the
coefficients of{1, cosϕ, cos2 ϕ, cos3 ϕ} vanish. It follows that2λ̃r2 = (4rc0 −
r2c2

0
)− 3k̃f + 2h̃r, p̃r3 = 2k̃f − 2rc0 − h̃r and

ν =

√

(2− k̃f )/(1 − k̃f ). (67)

Thus a torus with uniform tilting state as shown in Fig. 12b isan exact solution
to governing equations of chiral lipid vesicles. The ratio of two generation radii
satisfies Eq. (67), which increases withk̃f . Especially,ν =

√
2 for k̃f = 0, which

leads to the
√
2 torus of non-tilting lipid molecules [28]. Since this kind of torus

was observed in the experiment [20], tori withν >
√
2 for 0 < k̃f < 1 might also

be observed in some experiments on chiral lipid membranes.

5.3.4. Twisted Ribbons

Here we consider a quasi-exact solution for the governing equations to describing
equilibrium configurations of chiral lipid membranes with free edges. Two long
enough twisted ribbons with lipid molecules in different tilting states are shown
in Fig. 13. Similar to Sec.4.3, a twist ribbon can be expressed as vector form
{u cosϕ, u sinϕ,αϕ} with |u| ≤W/2, |ϕ| < ∞ and|α| = T/2π. Equation (57)
is transformed into [44]:

k̃f

(

φuu +
uφu + φϕϕ
u2 + α2

)

+
2h̃α sin 2φ

u2 + α2
= 0. (68)

whereφ is the angle betweenm and the horizontal.

If we only consider the uniform tilting state, the above equation requiresφ = 0 or
π/2. It is easy to see thatφ = 0 minimizes−h

∫

τmdA for α < 0 while φ = π/2
minimizes−h

∫

τmdA for α > 0 becauseτm = −α cos 2φ/(u2 + α2) [44].
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(a) (b)

Figure 13. Long enough twisted ribbons with lipid molecules in different
tilting states: (a)m is perpendicular to the edges; (b)m parallels the edges.
Arrows represent the projected directions{m} of the tilting molecules on the
ribbons’ surface. (Reprint from Ref. [44])

Thus we should takeφ = 0 for α < 0 andφ = π/2 for α > 0. The former
case corresponds to Fig. 13a wherem is perpendicular to the edges; the latter
corresponds to Fig. 13b wherem is parallel to the edges. Both forφ = 0 andπ/2,
Eq. (58) leads toc0 = 0 for non-vanishingα. Among the boundary conditions
(59)–(62), only Eq. (60) is nontrivial, which reduces to

λ̃(1 + x2)α2 − (h̃− γ̃x)|α|+ k̃fx
2 − 2k̃

2(1 + x2)
= 0 (69)

with x ≡ W/2|α|. Solutions to this equation exists for proper parameters. Thus,
there are indeed twist ribbons in two states as shown in Fig. 13, they have different
chirality and tilting angles.

6. Summary and Conclusion

In the above discussions, we have presented some theoretical results on the Ge-
ometry of membranes, which include the surface theory and variational method
based on moving frame, the governing equations to describe equilibrium con-
figurations of various lipid structures derived from the variation of free energy
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functionals, some analytic solutions to these equations and their corresponding
configurations. We only focus on the pure theoretical researches and miss all ex-
perimental and numerical results related to our topic on which gentle readers may
consult Refs. [3,8,9,13,17,47,49,51].

Although many theoretical advancements have been achieved, there are still a
lot of challenges waiting for further investigations. Several key open questions
among them are listed as follows.

(i) Lipid vesicles of multi-components. Cell membranes contains many kinds of
lipids. At body temperature, different kinds of lipids usually separate into several
lipid domains. Lipid vesicles with two or several domains have been investigated
from experimental and theoretical levels [3,10,15,41,45,49,52]. However, there is
still lack of strictly exact solutions to the governing equations [41, 45] describing
the vesicles with multi-domains.

(ii) Other solutions on the shape equations of lipid membranes. We have only
found a few analytic solutions to the governing equations oflipid structures.
Whether are there other solutions, in particular to the simplest equations (20) and
(22)? Or can we prove that there is no other analytic form except the solutions
that we have mentioned?

(iii) Generalized boundary conditions for open lipid membranes. Although we
have investigated the boundary conditions of lipid membranes with free edges,
there are still other kind cases, such as confined edges, contact lines, and so on.
Can we develop a generalized variational principle covering such cases?

(iv) Non-orientable membranes. All membranes that we have considered are ori-
entable membranes. How can we deal with the non-orientable membranes, such
as Möbius band [56]?
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