§ Ricci soliton

Let $(M^n,g(t))$ be a solution of the Ricci flow , and suppose $\varphi_t:M^n\to M^n$ is a time-dependent family of diffeomorphism with $\varphi_0=id$ and $\sigma(t)$ is a time-dependent scale factor with $\sigma(0)=1$ \circ

If $g(t) = \sigma(t)\varphi_t^*g(0)\cdots(*)$ then the solution $(M^n, g(t))$ is called a Ricci soliton \circ

(*) 兩邊微分後取 t=0

$$\frac{\partial}{\partial t}g(t) = \frac{d\sigma(t)}{dt}\varphi_t^*g(0) + \sigma(t)\frac{\partial}{\partial t}\varphi_t^*g(0)$$

$$-2Ric(g(0)) = \sigma'(0)g(0) + L_Vg(0) \cdots (*)$$
, where $V = \frac{d\varphi_t}{dt}$

A Ricci soliton structure is (M, g, X, λ)

$$Ric(g) + \frac{1}{2}L_X g = \frac{\lambda}{2}g \cdots (**)$$
 與(*)比較 $\lambda = -\sigma'(0)$

Tracing (**), we have $R + divX = \frac{n\lambda}{2}$, R is the saclar curvature •

$$divX = tr(\nabla X) = \sum_{i=1}^{n} \nabla_{i} X^{i}$$

If f is a function $\nabla f = df$, in local coordinates, $\nabla_i f := (df)_i = \frac{\partial f}{\partial x^i}$ and

$$\nabla^i f := (\nabla f)^i = g^{ij} \nabla_i f \circ$$

(**) simplifies to $Ric(g) + \nabla^2 f = \frac{\lambda}{2}g$ since $L_{\nabla f}g = 2\nabla^2 f$, here ∇^2 denote the

Hessian • These are so-called gradient Ricci solitons •

[Remark]

Lie derivative of a form ω :

$$X \in \chi(M)$$
, $L_X \omega := \lim_{t \to 0} \frac{1}{t} (\varphi_t^* \omega - \omega) = \frac{d}{dt} (\varphi_t^* \omega) \Big|_{t=0}$, Where φ_t is the local flow of $X \circ$

The Lie derivative of the metric tensor g:

$$(L_{V}g)_{ij} = V^{k}g_{ij,k} + V^{k}_{,i}g_{kj} + V^{k}_{,i}g_{ik}$$
 Or $(L_{X}g)_{\mu\nu} = X^{\rho}\partial_{\rho}g_{\mu\nu} + g_{\rho\nu}\partial_{\mu}X^{\rho} + g_{\rho\mu}\partial_{\nu}X^{\rho}$

Note that , K is a Killing vector field $\iff L_K g = 0$

 (M,g,X,λ) is a Ricci soliton , then $(M,g,K+X,\lambda)$ is also a Ricci soliton \circ Lemma

On a Riemannian manifold (M,g) , we have $(\mathbf{L}_{\mathbf{X}}g)_{ij} = \nabla_i X_j + \nabla_j X_i$

Where ∇ denote the Levi-Civita connection of the metric g \cdot for any vector field $X \circ$

Let ω be the 1-form due to the vector field X $\omega(Y) = \langle X, Y \rangle$ then

$$L_X g(Y, Z) = \dots = (\nabla_Y \omega)(Z) + (\nabla_Z \omega)(Y)$$

Let $\sigma'(0)=2\lambda$ in the result of Lemma 1.7 to write (*) in coordinates as

$$-2R_{ij} = 2\lambda g_{ij} + \nabla_i V_j + \nabla_j V_i$$

As a special case we can consider the case that V is the gradient vector field of some

scalar function on M^n , i.e. $V_i = \nabla_u f$ \circ The equation then becomes

$$R_{ii} + \lambda g_{ii} + \nabla_i \nabla_i f = 0$$

Such solutions are known as gradient Ricci solitons °

A gradient Ricci soliton is called shrinking if $\lambda < 0$, static if $\lambda = 0$, and expanding if $\lambda > 0$

- § Special and explicitly defined Ricci solitons
- 1. The Gaussian solitons
- 2. Shrinking round spheres

The metrics of constant positive curvature on the sphere S^n are anturally shrinking gradient Ricci solitons, when paired with any constant potential function \circ

If g_{s^n} is the round metric of constant sectional curvature equal to one , the rescaled

metric $g = 2(n-1)g_{s^n}$ will satisfy $[Ric(g) + \nabla^2 f = \frac{\lambda}{2}g]$ with the canonical choice of constant $\lambda = 1$ °

We call $(S^n, g, \frac{n}{2})$ the shrinking round sphere °

Reference [Curve shorting flow]

3. Einstein manifolds $Ric(g) = \frac{\lambda}{2}g$ of constant scalar curvature $\frac{n\lambda}{2}$

$$Ric(g) + \frac{1}{2}L_X g = \frac{\lambda}{2}g$$

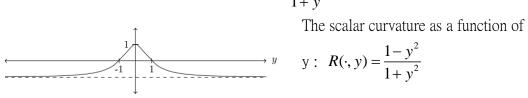
If (M, g, X, λ) is Einstein soliton, then $L_X g = 0$

The vector field X is Killing •

4. Product solitons

- 5. Quotient solitons
- 6. Nongradient(無梯度) solitons

The complete Riemannian metric $g = \frac{1}{1+y^2}(dx^2+dy^2)$, together with the complete vector field $X = -x \frac{\partial}{\partial x} - y \frac{\partial}{\partial v}$ generated by homotheties,comprises(包括) a complete nongradient expanding Ricci soliton struture $(R^2,g,X,-1)$ on R^2 \circ The scalar curvature of g is given by $R(x,y) = \frac{1-y^2}{1+y^2}$



Reference [hyperbolic plane] $ds^2 = \frac{1}{v^2}(dx^2 + dy^2)$

參考資料

- 1. [Soliton 淺談] by 林琦焜
- 2. [Ricci solitons with SO(3)-symmetries] by Robert L. Bryant
- 3. [Recent progress on Ricci solitons] by Huai-Dong Cao(曹懷東)
- 4. [Geometry of shrinking Ricci solitons] by Huai-Dong Cao(曹懷東)