§ Introduction to the Ricci flow

William Thurston 1946-2012 [\[On proof and Progress](Documents/OnProof.pdf) in Mathematics] The connected sum decomposition S^3, H^3, R^3 Hellmuth Kneser John Milor Thurston Geometrization Conjecture

We have a Riemannian manifold M with the metric g_0 , the Ricci flow is a PDE that

evolves the metric tensor
$$
\frac{\partial}{\partial t} g(t) = -2Ric(g(t)) \cdot g(0) = g_0
$$

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics $g(t)$ \circ $(M, g(t_0))$ is called the initial condition (or initial metric) \circ

We hope that the metric will evolve towards one of the Thurston eight fundamental geometric structure。

In **harmonic coordinates** about $p(\Delta x^i = 0$ for all i), we have

$$
Ric_{ij} = Ric(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) = -\frac{1}{2}\Delta g_{ij} + Q_{ij}(g^{-1}, \partial g) \text{ , where Q is a quadratic form in } g^{-1} \text{ and }
$$

 $\partial g \rightarrow$ so in particular is a lower order term in the derivative of g \circ

Where Δ is the Laplace-Beltrami operator : $\Delta f = div(\nabla f)$.

So, in these coordinates, the Ricci flow equation is actually a heat equation for the

Riemannian metric
$$
\frac{\partial}{\partial t} g = \Delta g + 2Q(g^{-1}, \partial g)
$$

Theorem 2.1. (Hamilton, 1982) Let \mathcal{M}^3 be a closed 3-manifold which admits a Riemannian metric with strictly positive Ricci curvature. Then \mathcal{M}^3 also admits a metric of constant positive $curvature.$

Uniformization(單值化) Theorem: Any Riemannian metric on a closed 2-manifold is conformal to one of constant curvature。

任何單連通的黎曼曲面都共形等價於複平面、單位圓盤和黎曼球面三者之一。

§ Special Solution of the Ricci flow Lemma 1.11

Let $X \in T_pM$ be a unit vector \circ Suppose that X is contained in some orthonormal basis

for $T_p M$, $Ric(X, X)$ is then the sum of the sectional curvature of planes spanned by X

and other elements of the basis。

Given an orthonormal basis for T_pM , the scaar curvature at p is the sum of all sectional curature of planes spanned by pairs of basis elements。

For $S^n(n>1)$ of radius r, the metric is given $g = r^2 g$ where g is the metric on the unit sphere $\frac{\pi}{2}$ The sectional curvature are all $\frac{1}{2}$ 1 $\frac{1}{r^2}$ \circ Thus for any unit vector $v \cdot Ric(v, v) = \frac{n-1}{2}$ *r* $=\frac{n-1}{2}$ by Lemma 1.11 \circ Therefore $Ric = \frac{R}{2}$ $Ric = \frac{n-1}{r^2}g = (n-1)\overline{g}$ $=\frac{n-1}{2}$ e = $(n-$ So the Ricci flow equation becomes an ODE $\frac{g}{dt} = -2Ric(g) \Rightarrow \frac{\partial}{\partial t}(r^2 \overline{g}) = -2(n-1)\overline{g} \Rightarrow \frac{dr^2}{dt} = -2(n-1)$ $\frac{\partial g}{\partial t} = -2Ric(g) \Longrightarrow \frac{\partial}{\partial t}(r^2 \overline{g}) = -2(n-1)\overline{g} \Longrightarrow \frac{dr^2}{dt} = -2(n-1)\overline{g}$ 2 $r(t) = \sqrt{R_0^2 - 2(n-1)t}$ · The manifold shrinks to a point as 2 0 $2(n-1)$ $t \rightarrow \frac{R}{\sigma}$ *n* \rightarrow \overline{a} \circ Similarly, for hyperbolic n-space $H^n(n>1)$, the Ricci flow reduces to the ODE $\frac{d(r^2)}{dt} = 2(n-1)$ which has the solution $r(t) = \sqrt{R_0^2}$ $r(t) = \sqrt{R_0^2 + 2(n-1)t}$ So the solution expands out to infinity。

§ Pinching(捏)

How the connected sum decomposition arises out of Ricci flow?

Consider $S^1 \times I$ (I is an interval) between two parts of a 2-manifolds。

$$
S^2\!\times\!I
$$

期待 $Ch 8:$ The details of how the pinching off (by surgery 手術)actually happens will in Chapter 8。

Figure 2.3: A neck "pinching off" in a 2-manifold. This diagram is intended to illustrate by lowerdimensional analogy what a neckpinch in a 3-manifold is like - the Ricci flow on 2-manifolds does not give rise to neckpinches.

The torus decomposition arises in a different way \circ \dddotsc

- An Illustrated introduction to the Ricci flow Gabriel Khan [部落格] 內有本書 $1.$ 第三版
- 2.