Preliminaries from Riemannian geometry
§ 1-1 Riemannian metrics and Levi-Civita connection

For any vector bundle V over M we denote by T'(V) the vector space of
smooth sections of V.

Theorem 1.2 Levi-Civita connection
Given a Riemannian metric g on M > there uniquely exists a torsion-free connection
on TM making g parallel > i.e. > there is a unique R-linear mapping
V:I'(TM) > T(T'M ® TM) satisfying the Leibnitz formula
V(fX)=df ® X + VX > and for all vector fields X and Y
1. d(g(X,Y))=9(VX,Y)+g(X,VY)
(V compatible withg > Xg(Y,Z)=9(V,Y,Z)+9(Y,V,Z))
2. V., Y-V, X-[X,Y]=0 - torsion free

In local coordinates (x',...,x") the Levi-Civita connection V is given by

1 ag" a9, agi'
Vv, (5,-)=F:}6k > where F:} :Egkl(axij + ale _ 8XIJ)

The covariant derivative allows us to define the Hessian of a smooth
function at any point, not just a critical point. Let f be a smooth real-

valued function on M. We define the Hessian of f, denoted Hess(f), as
follows:

(1.2) Hess(f)(X,Y) = X(Y(f)) = VxY (f).

LEMMA 1.3. The Hessian is a contravariant, symmetric two-tensor, i.e.,
for vector fields X and 'Y we have

Hess(f)(X,Y) = Hess(f)(Y, X)
and
Hess(f)(¢X,¢Y) = ¢gyHess(f)(X,Y)

for all smooth functions ¢,1. Other formulas for the Hessian are
Hess(f)(X,Y) = (Vx(Vf),Y) = Vx(Vy(f)) = V*f(X,Y).
Also, in local coordinates we have

Hess(f)ij = 0;0;f — (&gf)FZ

The Laplacian Af is defined as the trace of the Hessian - That is to say  in local

coordinates near p we have Af(p)= Zg” Hess(f)(0,,0,) °
ij



Thus > if {X;} is an orthonormal basis for T,M then Af(p) :ZHeSS(f)(Xi, X))

§ 1-2 Cuvature of a Riemannian manifold
R(X,Y)Z=V,V,Z-V,V,Z -V, Z

In local coordinates the curvature tensor can be represented as

| |
al; 6F,k ;Fm rl ;rinllrljm

R(X,Y,Z,W)=g(R(X,Y)W,Z) » R(5;,0;,0,,0,) =Ryy =

R(3,,0,)0, = R0, > where Rj =

g km RIT;

CraMm 1.5. The Riemann curvalure tensor R satisfies the following
properties:

o (Symmetry) Rijxi = —Rjirt, Rijri = —Rijik, Rijri = Riaij-

e (1st Bianchi identity) The sum of R;jr over the cyclic permutation of
any three indices vanishes.

e (2nd Bianchi identity) Rijrin + Rijini + Rijaky = 0, where
Rijrin = (Va, R)ijki-

1st Bianchi identity : R, + Ry +Rj, =0

2nd Bianchi identity : R, +Ry ; + R}, =0 L. Bianchi 1902

The sectional curvature of a 2-plane P T /M is defined as
K(P)=R(X,Y,X,Y) > where {X,Y} is an orthonormal basis of P -

K(P): RijkIXinkaI ’ Where X = Xiai,Y :Yiﬁi

K(7) =<R(e,e,)e,, e, > where {e,e,}isan orthonormal basis of 7=

<R(X,Y)Y,X >

Prove K(r)= |X|2 |Y|2—< Y o7

Ricci curvature tensor

Ric = ZR,de ®dx’ where R, —ZRKU » Ry =0,I'f -0, + T — I I

im™ jk

Scalar curvature



R=tr,Ric S(p)=R :=Zg“Rij
L]

§ 2.1 Consequences of Bianchi identities

§ 2.2 First examples
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THEOREM 1.11. (Uniformization Theorem) If (M",g) is a complete,
simply-connected Riemannian manifold of constant sectional curvature A,
then:

(1) If A= 0, then M"™ is isometric to Euclidean n-space.
(2) If A > 0O there is a diffeomorphism ¢: M — S™ such that g =
A~ Lop* (gst) where gst is the usual metric on the unit sphere in R+

(3) If A < 0 there is a diffeomorphism ¢: M — H"™ such that g =
IA| 7! ¢ (gst) where g is the Poincaré metric of constant curvature
—1 on H".

Of course, if (M™", g) is a complete manifold of constant sectional curva-
ture, then its universal covering satisfies the hypothesis of the theorem and
hence is one of S™,R™, or H", up to a constant scale factor. This implies
that (M, g) is isometric to a quotient of one of these simply connected spaces
of constant curvature by the free action of a discrete group of isometries.
Such a Riemannian manifold is called a space-form.

The Uniformization Theorem can be stated in two forms. The first form emphasizes the universal
covers and the second suggests the importance of the theorem by describing how the three universal
covers give us information about every Riemann surface.

Theorem 2.1 (The Uniformization Theorem, version 1). Up to biholomorphism, there are just

three simply connected Riemann surfaces: the complex plane C, the Riemann sphere C. and the
open disk .

Theorem 2.2 (The Uniformization Theorem, version 2). Every connected Riemann surface X is

biholomorphic to a quotient of one of C, C, or D by the covering space action of a subgroup I' of its
automorphism (self-biholomorphism) group.

Einstein manifold
Let M be n-dimensional manifold with n being either 2 or 3 - If (M,g) is Einstein with

Einstein constant A > then M has constant sectional curvature » so that in

fact M is a space-form -

§ 2.3 Cones

Let (N,g) be a Riemannian manifold -



Open cone over (N,g) : Nx(0,00) with é

g(x,s) =s2g(x) +ds? forany (xs)e N x(0,0)

Fix local coordinates (x',x%,...,x") on N« Set X’ =s - inthe local coordinates
(XO,Xl,...,X”) for the cone > the relation between F:‘j and F:‘j are ...

Denote by R4 the curvature tensor for g and by Ry the curvature tensor
for g. Then the above formulas lead directly to:

R;(0:,0;)(D0) =0;  0<14,j<n,
R5(9i,05)(0i) = Ry(0i, 0;)(05) + 9ii0j — g5i0; 1 < 1,5 <.
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Geodesics and the exponential map

§ 3.1 Geodesics and the energy functional
Let | be an open interval © y:I - M 1s a smooth curve °

, . d
y 1scalled a geodesic if VT =0 > where T = di/ o
In local coordinates, we write y(¢) = (z'(t),...,2"(t)) and this equation

becomes

0= Vsi(t) = (Z (#(0) + (0 ()T (+(2) ak) .

k

So the geodesic equationis X“+T X' x' =0

Hopf-Rinow
If (M,g) is complete as a metric space * then every geodesic extends to a geodesic
defined for all time °

Geodesics are critical points of the energy functional -

§ 3.2 Families of geodesics and Jacobi fields

Jacobi equation

V.V, Y +R(Y, X)X =0

A vector field Y along a geodesic y is said to be a Jacobi field if it satifies this

equation and vanishes at the initial point p °



Jacobi fields are also determined by the energy functional -

§ 3.3 Minimal geodesics
Conjugate point
Let y be ageodesic beginningat peM ° Forany t>0 we say that q=y(t) isa
conjugate point along y if there is a non0Ozero Jacobu field along » vanishing at
y(t) °
PROPOSITION 1.20. Suppose that ~: [0,1] — M is a minimal geodesic.
Then for anyt < 1 the restriction of v to [0,t] is the unique minimal geodesic

between its endpoints and there are no conjugate points on ~([0,1)), i.e.,
there is no non-zero Jacobi field along vy vanishing at any t € [0,1).

§ 3.4 The exponential mapping
7, :[0,1] > M is a geodesic starting from p with initial velocity vector v ©

exp,(v) =7,@)
By the Hopf-Rinow theorem > if M is complete » then the exponential map is defined

on all of TpM o
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§ 4 Computations in Gaussian normal coordinates

§ 5 Basic curvature comparison results

THEOREM 1.31. (Sectional Curvature Comparison) Fiz k > 0. Let
(M,g) be a Riemannian manifold with the property that —k < K(P) for
every 2-plane P in TM. Fix a minimizing geodesic v: [0,70) — M param-
eterized at unit speed with v(0) = p. Impose Gaussian polar coordinates
(r,0%,....0"1) on a neighborhood of v so that g = dr? + g;;6" ® 67. Then
for all 0 < r < ry we have

(915 (r, 0))12ij2n—1 < sng(r),
and the shape operator associated to the distance function from p, f, satisfies

(Sij('f‘, 9))13523'3,1_1 S \/E(Itk(?“).



There is also an analogous result for a positive upper bound to the
sectional curvature, but in fact all we shall need is the local diffeomorphism
property of the exponential mapping.

LEMMA 1.32. Fiz K > 0. If [Rm(z)| < K for all z € B(p,7/VK), then
exp,, is a local diffeomorphism from the ball B(0,7/VK) in T,M to the ball
B(p,7/VK) in M.

There is a crucial comparison result for volume which involves the Ricci
curvature.

THEOREM 1.33. (Ricci curvature comparison) Fiz k > 0. Assume
that (M, g) satisfies Ric > —(n — 1)k. Let v: [0,79) — M be a minimal
geodesic of unit speed. Then for any r < rqg at y(r) we have

Vdetg(r,0) < snz_l(r)

and

Te(S)(r,0) < (1 — 1) ).
sng(r)

THEOREM 1.34. (Relative Volume Comparison, Bishop-Gromov 1964-
1980) Suppose (M, g) is a Riemannian manifold. Fir a point p € M, and
suppose that B(p, R) has compact closure in M. Suppose that for some k > 0
we have Ric > —(n—1)k on B(p, R). Recall that H}} is the simply connected,
complete manifold of constant curvature —k and q; € H]! is a point. Then

Vol B(p, )
Vol By B(qy, )
is a non-increasing function of r for r < R, whose limit as r — 0 is 1.

In particular, if the Ricci curvature of (M,g) is > 0 on B(p,R), then
Vol B(p,r)/r™ is a non-increasing function of v for r < R.

§ 6. Local volume and the injectivity radius

ProproSITION 1.35. Fiz an integer n > 0. For every € > 0 there is § > 0
depending on n and € such that the following holds. Suppose that (M™, g) is
a complete Riemannian manifold of dimension n and that p € M. Suppose
that |Rm(z)| < r=2 for all x € B(p,r). If the injectivity radius of M at p is
at least er, then Vol(B(p,r)) > or".

THEOREM 1.36. Fiz an integer n > 0. For every € > 0 there is 6 > 0
depending on n and € such that the following holds. Suppose that (M™,g)
is a complete Riemannian manifold of dimension n and that p € M. Sup-
pose that |Rm(x)| < r=2 for all x € B(p,7). If Vol B(p,r) > er™ then the
injectivity radius of M at p is at least or.



