§ Curvature of a Riemannian manifold

The Riemann curvature tensor of M is the (1,3)-tensor on M

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

In local coordinates $R(\partial_i, \partial_j)\partial_k = R_{ijk}^l \partial_l$

Where
$$R_{iik}^l = \partial_i \Gamma_{ik}^l - \partial_i \Gamma_{ik}^l + \Gamma_{ik}^m \Gamma_{im}^j - \Gamma_{ik}^m \Gamma_{im}^l$$

R(X,Y,Z,W) = g(R(X,Y)W,Z) is a (0,4)-tensor

In local coordinates

$$R(\partial_i, \partial_i, \partial_k, \partial_l) = R_{iikl} = g_{km}R_{iil}^m$$

Claim 1.5. The Riemann curvature tensor \mathcal{R} satisfies the following properties:

- (Symmetry) $R_{ijkl} = -R_{jikl}$, $R_{ijkl} = -R_{ijlk}$, $R_{ijkl} = R_{klij}$.
- (1st Bianchi identity) The sum of R_{ijkl} over the cyclic permutation of any three indices vanishes.
- (2nd Bianchi identity) $R_{ijkl,h} + R_{ijlh,k} + R_{ijhk,l} = 0$, where

$$R_{ijkl,h} = (\nabla_{\partial_h} \mathcal{R})_{ijkl}.$$

§ sectional curvature of a 2-plane $P \subset T_n M$

K(P)=R(X,Y,X,Y), where $\{X,Y\}$ is an orthonormal basis of $P \circ$

In local coordinates \dot{Y} , suppose that $X = X^i \partial_i, Y = Y^i \partial_i$, then

$$K(P) = R_{ijkl} X^i Y^j X^k Y^l$$

 S^{n-1} the sphere of radius r in R^n has constant sectional curvature $\frac{1}{r^2}$ °

 R^n with the Euclidean metric has constant sectional curvature 0 Hyperbolic space H^n has constant setional curvature -1

§ Ricci curvature tensor

$$Ric(X,Y) = g^{kl}R(X,\partial_k,Y,\partial_l)$$
 in local coordinates

 \S scalar curvature $R = tr_g Ric = g^{ij} Ric_{ij}$

§ Consequences of the Bianchi identities

$$\nabla_{\sigma}R_{\alpha\beta\mu\nu} + \nabla_{\upsilon}R_{\alpha\beta\sigma\mu} + \nabla_{\mu}R_{\alpha\beta\upsilon\sigma} = 0 \quad \text{will be of fundamental important to find the}$$

Einstein equation •

For any contravariant two-tensor ω on M (such as Ric or Hess(f)), we define the contravariant one-tensor $div(\omega)$

$$div(\omega)(X) = \nabla^* \omega(X) = g^{rs} \nabla_r(\omega)(X, \partial_s)$$

Then
$$dR = 2div(Ric) = 2\nabla^*Ric$$

§ Uniformization Theorem

If (M,g) is a complete $\,^{,}$ simply-connected Riemannian mnifold of constant sectional curvature $\,\lambda\,^{,}$ then

- (1) If $\lambda = 0$, then M is isometric to Euclidean n-space
- (2) If $\lambda > 0$, there is a diffeomorphism $\phi: M \to S^n$ such that $g = \lambda^{-1} \phi^*(g_{ii})$,

where g_{ii} is the usual metric on the unit sphere in R^{n+1}

(3) If $\lambda < 0$, there is a diffeomorphism $\phi: M \to H^n$ such that $g = |\lambda|^{-1} \phi^*(g_{ii})$,

where g_{ij} is the Poincare metric of constant curvature -1 on H^n

Of course, if (M^n, g) is a complete manifold of constant sectional curvature, then its universal covering satisfies the hypothesis of the theorem and hence is one of S^n, \mathbb{R}^n , or \mathbb{H}^n , up to a constant scale factor. This implies that (M, g) is isometric to a quotient of one of these simply connected spaces of constant curvature by the free action of a discrete group of isometries. Such a Riemannian manifold is called a *space-form*.

§ Einstein manifold

$$Ric(g) = \lambda g$$

EXAMPLE 1.13. Let M be an n-dimensional manifold with n being either 2 or 3. If (M,g) is Einstein with Einstein constant λ , one can easily show that M has constant sectional curvature $\frac{\lambda}{n-1}$, so that in fact M is a space-form.