§ Hessian of a smooth function

$$
\operatorname{Hess}(f)(X, Y)=X(Y(f))-\nabla_{X} Y(f)
$$

Lemma

The Hessian is a contravariant，symmetric two－tensor 。
For any vector fields X and Y
1． $\operatorname{Hess}(f)(X, Y)=\operatorname{Hess}(f)(Y, X)$ 。 The proof of symmetry is direct from the torsion－free assumption。

$$
\operatorname{Hess}(f)(X, Y)-\operatorname{Hess}(f)(Y, X)=[X, Y](f)-\left(\nabla_{X} Y-\nabla_{Y} X\right)(f)=0
$$

對稱 $\nabla_{X} Y-\nabla_{Y} X=[X, Y]$（called torsion free）
2． $\operatorname{Hess}(f)(\phi X, \psi Y)=\phi \psi \operatorname{Hess}(f)(X, Y)$ for all smooth functions ϕ, ψ Other formulas for the Hessian are

1．$\quad \operatorname{Hess}(f)(X, Y)=\left\langle\nabla_{\mathrm{X}}(\nabla f), \mathrm{Y}\right\rangle=\nabla_{X}\left(\nabla_{Y}(f)\right)=\nabla^{2} f(X, Y)$

$$
\left\langle\nabla_{X}(\nabla f), Y\right\rangle=X\left(\langle\nabla f, Y\rangle-\left\langle\nabla f, \nabla_{X} Y\right\rangle=X(Y(f))-\nabla_{X} Y(f)=\operatorname{Hess}(f)(X, Y)\right.
$$

2． $\operatorname{Hess}(f)_{i j}=\partial_{i} \partial_{j} f-\left(\partial_{k} f\right) \Gamma_{i j}^{k}$ in local coordinates

$$
\nabla^{2} u=\left(\begin{array}{cccc}
u_{x_{1} x_{1}} & u_{x_{1} x_{2}} & \cdots & u_{x_{1} x_{n}} \\
u_{x_{2} x_{1}} & u_{x_{2} x_{2}} & \cdots & u_{x_{2} x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{x_{n} x_{1}} & u_{x_{n} x_{2}} & \cdots & u_{x_{n} x_{n}}
\end{array}\right) . \quad \text { is called the Hessian matrix of } \mathrm{u}
$$

The Laplacian Δf is defined as the trace of the Hessain ：
In local coordinates near p ，we have $\Delta f(p)=\sum_{i j} g^{i j} \operatorname{Hess}(f)\left(\partial_{i}, \partial_{j}\right)$
Thus，if $\left\{X_{i}\right\}$ is an orthonormal basis for $T_{p} M$ then $\Delta f(p)=\sum_{i} \operatorname{Hess}(f)\left(X_{i}, X_{i}\right)$

Since $d f=\left(\partial_{r} f\right) d x^{r}$ and $\nabla\left(d x^{k}\right)=-\Gamma_{i j}^{k} d x^{i} \otimes d x^{j}$ ，it follows that
$\nabla(d f)=\left(\partial_{i} \partial_{j} f-\left(\partial_{k} f\right) \Gamma_{i j}^{k}\right) d x^{i} \otimes d x^{j}$, It is direct from the definition that
$\operatorname{Hess}(f)_{i j}=\operatorname{Hess}(f)\left(\partial_{i}, \partial_{j}\right)=\partial_{i} \partial_{j} f-\left(\partial_{k} f\right) \Gamma_{i j}^{k}$

§ 參考［Extrema］

