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My lecture at Strings ‘95 focussed on determining the strong coupling behavior of

various string theories in various dimensions. Among the main points were the following:

U-duality of Type II superstrings requires that the strong coupling limit of the Type IIA

superstring in ten dimensions is eleven-dimensional supergravity (on R10 × S1); one can

make sense of heterotic string dynamics in five, six, and seven dimensions and deduce S-

duality in four dimensions if one assumes that the heterotic string on R6×T4 is equivalent

to the Type IIA theory on R6 ×K3. The detailed arguments have appeared elsewhere [1]

and will not be repeated here. Instead I will try to clarify a few related issues, in some

cases involving questions that were asked at the meeting.

The issues I will discuss in sections one and two involve mainly the extended gauge

symmetry of the Type IIA superstring on R6 ×K3 at certain points in moduli space. In

section one, I analyze how the Type IIB theory behaves when Type IIA has extended

gauge symmetry, and in section two, I discuss the nature of the singularity that occurs

in conformal field theory at these points. In section three, I consider instead some issues

involving the behavior of the real world under dimensional reduction; these issues may be

relevant to the vanishing of the cosmological constant.

1. The Type IIB Theory On R6 ×K3

The best-established string-string duality is the equivalence between the heterotic

string on R6×T4 and the Type IIA string on R6×K3. According to this equivalence, the

Type IIA model on R6 ×K3 gets extended non-abelian gauge symmetry at certain points

in K3 moduli space. Our first question is to determine how the Type IIB theory – likewise

compactified on R6 ×K3 – behaves at the points in moduli space at which the Type IIA

theory develops enhanced gauge symmetry.

It is certainly not the case that the Type IIB theory develops enhanced gauge symme-

try at those points. In fact, the Type IIB theory on R6 ×K3 has a chiral supersymmetry

that simply does not admit gauge multiplets of any kind, abelian or non-abelian. It is very

hard for the Type IIB theory to get extra massless particles at special points in K3 moduli

space, and these are not needed to account for singularities in the Zamolodchidov metric.

The moduli space of vacua of the Type IIB theory on R6×K3 is apparently [1,2] the locally

homogeneous space SO(21, 5; Z)\SO(21, 5; R)/(SO(21)×SO(5)). The singularities of this

space are orbifold singularities, and instead of looking for a description of these in terms of
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extra massless particles, we can simply interpret them as a sign of restoration of a discrete

local gauge symmetry.

However, such discrete symmetry restoration cannot be the whole story of what hap-

pens to the Type IIB theory at special points in K3 moduli space. This becomes clear if

one makes a further compactification to R5 × S1 ×K3. Once this is done, the Type IIB

theory becomes equivalent to the Type IIA theory, which does get extra massless particles

at certain points in K3 moduli space. The Type IIB theory has to do something peculiar

such that one does not get extra massless particles on R6 × K3, but one does get extra

massless particles on R5 × S1 ×K3, for any radius of the circle.

Let us write down the precise comparison of the Type IIA and Type IIB theories in

this situation. We will be a little more general than the six-dimensional case. First, if a

d-dimensional string theory is compactified to d−1 dimensions on a circle of circumference

R, then the relation between the d and d− 1-dimensional string coupling constants is

1

λ2
d−1

=
R

λ2
d

. (1.1)

For Type IIA and Type IIB theories compactified from d to d− 1 dimensions on a circle

to be equivalent, they must have the same λd−1, so the relation among couplings in d

dimensions is
RA
λ2
d,A

=
RB
λ2
d,B

. (1.2)

Here RA and RB are the circumference of the circle as measured in the Type IIA and Type

IIB theories, and similarly λd,A and λd,B are the respective string couplings. Bearing in

mind also the T -duality relation RA = 1/RB, we can write (1.2) as

1

λd,A
=

RB
λd,B

, (1.3)

a relation that of course also holds if A and B are exchanged. We will henceforth write

the d-dimensional couplings as simply λA and λB.

Now, suppose that in the K3 moduli space, one is a distance ε from a point at which the

Type IIA theory gets an enhanced gauge symmetry. Then the Type IIA theory on R6×K3

has W bosons with mass a constant times ε/λA; this mass is unchanged in compactification

to R5×S1×K3. (The W mass is exactly independent of RA, not just approximately so for
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large RA, because the W boson is in a BPS-saturated “small” supermultiplet.) According

to (1.3), the mass of the W meson in the Type IIB theory on R5 × S1 ×K3 is then

MW =
εRB
λB

. (1.4)

What are we to make of (1.4)? What sort of state has a mass proportional to RB?

The answer to this question, clearly, is that this is the mass of a string wrapping around

the circle of circumference RB. So we can interpret (1.4) to mean that the Type IIB theory

on R6 ×K3 has some kind of cosmic string with a string tension

T =
ε

λB
. (1.5)

After compactification on a circle, the W boson then arises as a particular winding state

of this string.

The string whose tension is given in (1.5) is certainly not the fundamental Type

IIB superstring. Rather, we must apparently begin with the self-dual super-three-brane

solution of the Type IIB theory in ten dimensions [3], whose tension is of order 1/λB.

As ε goes to zero, a two-sphere S in the K3 collapses, having an area proportional to ε

[1]. S is self-dual, in the sense that its Poincaré dual cohomology class is self-dual. As

in Strominger’s discussion of the conifold singularity in four dimensions [4], when one

compactifies below ten dimensions, one can get a p-brane for p < 3 by wrapping the ten-

dimensional super-three-brane around a cycle of dimension 3− p. In particular, upon K3

compactification, one can wrap the three-brane around S to get a string in six dimensions.

The tension of this string will be 1/λB (the tension of the three-brane) times ε (the area

of S), in agreement with (1.5). Since S is self-dual, the string we get in six dimensions is

likewise self-dual (that is, the three-form H = dB that the string produces is self-dual). It

is thus similar to the six-dimensional self-dual string described in [5].

This self-dual string is a non-critical string in six dimensions; its tension (1.5) can

be vastly below the string and Planck scales. For very small ε, one should interpret

this as a string that is far too light to influence gravity and which simply propagates in

six-dimensional Minkowski space. There is such a string theory for each possible type

of isolated singularity (A, D, or E) of the K3. (The formulation in the last paragraph

with a single collapsing two-sphere was strictly appropriate only for A1.) Obviously, these

non-critical six-dimensional strings are quite different from anything we really understand

presently. The fact that these objects have not been discovered in traditional constructions
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of string theories actually follows from the fact that they are self-dual, so that (as in Dirac

quantization of electric and magnetic charge) the string coupling is necessarily of order

one.

A weakly coupled string theory with string tension T has long-lived excitations with

masses proportional to
√
T . If this formula can be used in the present case - which is

not entirely clear - then the Type IIB theory near the special K3 points has long-lived

non-perturbative “string” states with masses in string units proportional to
√
ε/λB. In

Einstein units, these states have masses of order
√
ε. In heterotic string units, the mass is

of order
√
ε/λh (times the masses of elementary string states), with λh the heterotic string

coupling constant.

1.1. Reduction To Four Dimensions

Now, let us recall that, although the Type IIB theory on R6 ×K3 does not have any

gauge fields, it does have a plethora of two-forms (twenty-one with self-dual field strength

and five with anti-self-dual field strength). One of them - say B - arises by writing the

four-form C of the ten-dimensional Type IIB theory as C = B ∧G, where G is a self-dual

harmonic two-form on K3 supported (for small ε) very near S, and B is a two-form on R6.

B is self-dual (that is, it has a self-dual field strength) because C and G are self-dual.

If we compactify from R6 to R5 × S1, then the components Bi6 (i = 1 . . . 5) of B

become a gauge field Ai in five dimensions. One might think that one would also get a

five-dimensional two-form from Bij , but in five-dimensions a two-form is dual to a one-

form, and self-duality of B in six dimensions becomes in five dimensions the statement

that Bij is dual to Ai. Thus the independent degrees of freedom are all in Ai. The string

winding states discussed above carry the electric charge that is coupled to Ai.

The further compactification to four dimensions, replacing R6 by R4 ×T2, has been

discussed at the field theory level in [6]. The self-dual two-form B in six dimensions again

gives rise in four dimensions to only one U(1) gauge field - as Ai = Bi6 and Ãi = Bi5 are

dual.

Going back to string theory, it follows that the two types of winding states of the

non-critical string - strings wrapping around the first or second circle in T2 = S1 × S1 -

carry electric and magnetic charge for this one U(1) gauge field. The coupling parameter

τ of the four-dimensional U(1) theory is simply the τ of the T2. The four-dimensional

theory has manifest S-duality coming from the diffeomorphisms of the T2. (If we bear in

mind that SL(2,Z)U of Type IIB is SL(2,Z)T of Type IIA, this is equivalent to the fact
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[1] that string-string duality transforms S-duality of the heterotic string into T -duality of

the Type IIA string.)

What makes this interesting is that it gives a manifestly S-dual formulation of N = 4

supersymmetric Yang-Mills theory. In fact, for very small ε, the W bosons and monopoles

(which come from string winding states and have masses of order ε) are much lighter than

other string excitations (which as we noted above generically have masses of order ε1/2).

Thus, in this limit, the manifestly S-dual theory of the self-dual string on R4×T2 should

go over to N = 4 supersymmetric Yang-Mills theory on R4.

This may well be the proper setting for understanding S-duality of the N = 4 gauge

theory. Thus, if one asks, “How can the S-duality of N = 4 Yang-Mills theory be made

obvious?” one answer is that this can be done by embedding N = 4 supersymmetric

Yang-Mills theory in the heterotic string and then mapping to a Type IIA theory by using

string-string duality. The weakness of this answer is that it embeds the gauge theory in

a problem with many other features - such as gravity - that may not be material. One

would like to “flow to the infrared,” eliminating as many degrees of freedom as possible,

and obtaining the minimal theory in which the S-duality is still manifest. The self-dual

string in six dimensions may be the answer to this question.

The self-dual string in six dimensions does not look easier than the Type IIB model

that we started with; certainly we understand it less. Nevertheless, it might be the right

structure for understanding the four-dimensional field theory. The situation would be

somewhat similar to the study of critical phenomena. In that subject, one can start with

an elementary, manifestly well-defined system such as a lattice Ising model. In seeking to

describe the critical behavior, the right object to introduce turns out to be a continuum

quantum field theory even though this is superficially far less elementary (existence is far

less obvious, for instance) and superficially there are far more degrees of freedom. The

field theory is the right object for critical phenomena because it contains all the universal

information (about the critical point) and nothing else. The more elementary-looking

Ising model has the field theory as a difficult-to-extract limit; the additional information

it contains is extraneous. The self-dual string may similarly be the minimal manifestly

S-dual extension of the N = 4 super Yang-Mills theory.
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1.2. Non-Local Critical Points In Four Dimensions

Likewise, natural answers to other questions about gauge theory dynamics may involve

non-critical strings of one kind or another. For instance, there appears to be [7] an N = 2

superconformal critical point in four dimensions with massless electrons and monopoles

alike. A natural understanding of this critical point may be difficult to achieve in field

theory – where it is hard to put electrons and monopoles on the same footing. Perhaps

one should seek a natural description by some sort of non-critical string theory.

Certainly critical string theory gives a natural framework for describing generalizations

of the critical point considered in [7]. That critical point, first of all, can be embedded in

string theory by simply considering a Calabi-Yau manifold with a singularity that looks

like

t2 + w2 + y2 + x3 = ε. (1.6)

This manifold contains [8] two S3’s that collapse as ε→ 0. These two S3’s have a non-zero

intersection number, with the result that the charged black holes that arise as ε → 0 are

respectively electrically and magnetically charged with respect to the same U(1). In fact,

the description of the critical point in [7] involves essentially the family of complex curves

y2 + x3 = ε. (1.7)

In this case, a pair of S1’s with a non-zero intersection number collapse as ε→ 0. Obviously,

(1.6) is obtained from (1.7) by adding new variables that appear quadratically, a standard

operation that preserves many aspects of the singularity.

An SU(N) generalization of this critical point that was explained briefly in [7] involves

the family of curves y2 + xN = ε and could be imitated by a Calabi-Yau singularity

w2 + z2 + y2 + xN = ε. More generally, the N = 2 SU(N) gauge theory with a massive

adjoint hypermultiplet can realize an arbitrary singularity of the form F (x, y) = ε [9],

corresponding to a Calabi-Yau singularity

t2 + w2 + F (x, y) = ε. (1.8)

From the Calabi-Yau point of view, we can write many more objects, such as a general

hypersurface singularity F (t, w, x, y) = 0. To restrict oneself to singularities that are at

a finite distance in the Zamolodchikov metric, one should consider what are called the

canonical singularities (reviewed in [10]) of which (1.8) is an example. As there are many

other canonical singularities, it may turn out that the natural classification and description

of such non-local fixed points involves the canonical singularities and the string theory

dynamics they produce.
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2. The Singularity Of The Conformal Field Theory

At the time of Strings ‘95, two points about the extended gauge symmetry of the

Type IIA superstring on R6 ×K3 were particularly puzzling:

(1) Although it was clear that the extended gauge symmetry occurred only when one

or more two-spheres collapse to zero area, it was not clear why such collapse would lead

to the appearance of extra massless gauge bosons.

(2) More generally, it seemed that the collapse of a two-sphere could lead to an interest-

ing novelty in string theory only if there is some sort of breakdown of the conformal field

theory. The example of orbifolds, which certainly contain collapsed two-spheres (which

are restored to non-zero area if one blows up the orbifold singularities by adding suitable

twist fields to the world-sheet Lagrangian) seemed to show that there was absolutely no

singularity in the conformal field theory when a two-sphere collapses.

The first point was soon settled by Strominger [4]: a two-brane wrapped around a

two-sphere goes to zero mass when the two-sphere collapses to zero area. (Strominger

discussed mainly compactification on Calabi-Yau threefolds, but the application to K3 is

evident.)

The second point was settled more recently by Aspinwall [11] who showed that ex-

tended gauge symmetry arises only when there is a collapsed two-sphere and in addition

a certain world-sheet theta angle vanishes. Orbifolds, that is K3’s that are of the form

T4/Γ with Γ a finite group, contain collapsed two-spheres, but the relevant theta angles

are non-zero.

In fact, associated with the S2 are four real parameters: the area, the theta angle,

and two parameters associated with the complex structure. Aspinwall’s claim is that all

four parameters must vanish to get extended gauge symmetry.

Since orbifolds no longer serve as a counterexample, the likelihood now arises that

the K3 conformal field theory is singular at the points at which extended gauge symmetry

appears. That is the question that I wish to address in the present section. I will analyze

the question by a mean field theory approach, and suggest an answer that seems natural.

First we will look at a problem – which proves to be analogous – of an instanton shrinking to

zero size; then we will consider the K3 case; and finally we will discuss conifold singularities

of threefolds in a similar spirit.
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2.1. Instanton Shrinking To Zero Size

In [12], I described a mean field approach to sigma models that are related to Yang-

Mills instantons. This was achieved by constructing two-dimensional linear sigma models

with (0, 4) world-sheet supersymmetry, which appear to flow in the infrared to conformal

field theories related to Yang-Mills instantons on R4.

I will not here recall the full details of the construction. Suffice it to note that the

bosons are four massless fields XBY , and additional fields φB
′Y ′ that are generically mas-

sive (each of the four types of index B,B′, Y, Y ′ is acted on by a different symmetry group);

inclusion of the massive fields makes it possible to write a simple polynomial Lagrangian

that leads (after integrating them out) to very complicated Yang-Mills instantons. In the

one-instanton sector, the description is particularly simple; there are four φ’s, and the

potential energy is

V =
1

8

(
X2 + ρ2

)
φ2 (2.1)

with ρ the instanton size. For ρ large (compared to the string scale), φ is everywhere very

heavy, and after integrating it out one gets something very much like an ordinary Yang-

Mills instanton, embedded in string theory. For ρ of order the string scale, the stringy

corrections to the instanton may be large. The point on which we wish to focus here is

the behavior of the conformal field theory when ρ goes to zero. If we take (2.1) literally,

we appear to learn that the “target space,” obtained by setting V = 0, acquires a second

branch precisely at ρ = 0. Apart from the usual space-time M with X unrestricted and

φ = 0, we get a second world M ′ with φ unrestricted and X = 0. The linear sigma model

at ρ = 0 in fact has a symmetry that exchanges X and φ.

Before accepting the strange idea that when an instanton reaches zero size, a second

branch in space-time appears, let us compare to another approach to the problem, in which

one simply solves the space-time equation for the instanton including terms of order α′

[13,14]. In this approximation, the metric on a space-time that contains an instanton of

scale parameter ρ centered on the origin turns out to be

ds2 = (dX)2 ·
(
e2φ0 + 8α′

X2 + 2ρ2

(X2 + ρ2)2

)
(2.2)

(with φ0 the value of the dilaton at infinity). The picture is quite different from what

one seems to get from mean field theory. As ρ goes to zero, instead of a second branch

appearing, the space-time develops a long tube, with the result that at ρ = 0, X = 0 is

infinitely far away.

8



It is true that (2.2) is based only on solving the low energy equations to lowest order

in α′. However, one can show [14] that at ρ = 0, the long tube that arises near X = 0

corresponds to an exact soluble conformal field theory (a WZW model times a free field

with a linear dilaton), and this gives credence to the idea that the structure seen in (2.2)

is essentially correct.

On the other hand, there is the following problem in the “two-branch” scenario that

mean field theory seems to suggest. The global (0, 4) supersymmetry algebra admits an

SU(2) × SU(2) group of R symmetries. To extend the global (0, 4) algebra to a super-

conformal algebra, one of the two SU(2)’s is included in the algebra and so is generated,

in particular, by purely right-moving currents. (The second SU(2) is not part of the

superconformal algebra, but might be realized as a symmetry group acting by outer auto-

morphisms on the algebra; if so the conserved current generating this symmetry can have

both left and right-moving pieces.)

Now, the linear sigma model of the instanton has at ρ = 0 the full SU(2) × SU(2)

symmetry, called F×F ′ in [12]. If this model flows in the infrared to a (0, 4) superconformal

theory, is it F or F ′ that appears in the superconformal algebra? The basic fact here is

that F acts by rotations of X but acts trivially on φ, and F ′ rotates φ but acts trivially on

X. The currents generating the F action on X are XAY ∂αX
B
Y and have both left and

right-moving parts which are not separately conserved even if X is treated as a free field

(which is valid for X large enough); the currents generating the F ′ action on φ are similar.

Therefore, in any superconformal description that contains X, F cannot appear in

the superconformal algebra, and in any description that contains φ, F ′ cannot appear

in the superconformal algebra. If this theory flows to a superconformal field theory in

the infrared, then (short of more exotic possibilities in which the pertinent symmetries

cannot be seen in the linear sigma model at all) the symmetry between X and φ must be

“spontaneously broken”: there must be two different superconformal limits, one living on

the X branch with F ′ in the algebra, and one living on the φ branch with F in the algebra.

Given that in the linear sigma model the distance between the X and φ branches

appears to be finite (they even meet at X = φ = 0) how is this possible? It must be that

as one flows to the infrared, the distance grows from any given point on either branch

to the point X = φ = 0 where they meet; in the limit of the conformal field theory, this

distance must become infinite and the two branches separate. What makes this plausible is

that near X = φ = 0, the classical linear sigma model does not give a good approximation
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to the metric on the target space; loop diagrams are proportional to negative powers of

the mass, that is, to powers of 1/X2 or 1/φ2.

Thus, we have recovered, or at least rationalized, the qualitative structure of (2.2)

from the linear sigma model. To avoid a contradiction with the properties of F and F ′,

the two branches must be decoupled at ρ = 0, and this most reasonably happens by X = 0

being infinitely far away (from finite points on the X space) when ρ = 0, as we see in (2.2).

2.2. Singularities Of K3’s

Now I wish to describe a similar mean field theory by which we can study orbifold

singularities of K3. For simplicity, we will discuss only the Z2 orbifold singularity, so

we will analyze simply the (4, 4) superconformal field theory with target space R4/Z2. 2

In the twisted sector of this orbifold, there are four moduli (three of them involving the

classical blow-up and deformation of the singularity and one the world-sheet theta angle).

Since it is difficult to add twist fields to the Lagrangian with finite coefficients (as one must

do, according to [11], to reach the point relevant to extended gauge symmetry), we will

study instead a (4, 4) linear sigma model in which all four parameters can be exhibited.

The goal is to recover the claim that a singularity only arises when all four parameters

have special values and to learn something about the singularity.

Most of the construction and analysis of the linear sigma model are quite similar to

the discussion of the (2, 2) case in [17], so we will be brief. The model we will discuss is a

two-dimensional (4, 4) globally supersymmetric theory consisting of a U(1) gauge theory

coupled to two hypermultiplets Hi, i = 1, 2, of the same charge. From an N = 2 point of

view (in what follows we count supersymmetries in two dimensions, so what we call N = 2

and N = 4 are related to N = 1 and N = 2 in four dimensions), each Hi consists of a

chiral multiplet M i of charge 1 and another chiral multiplet M̃i of charge −1. The (4, 4)

U(1) gauge multiplet contains four scalars φi (as one can see by dimensional reduction

from more familiar facts in four or six dimensions). The potential energy of the theory is

V =
1

2e2

(
~D(H) − ~r

)2

+
1

2
|H|2|φ|2. (2.3)

2 The general A −D − E case can be discussed using a linear sigma model constructed via

Kronheimer’s description of the A − D − E singularities as hyper-Kahler quotients [15]. Kron-

heimer’s construction specializes for A1 to the description we will give below, which also entered

in [16].
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This formula is analogous to equation (3.2) in [17] for the (2, 2) case. The notation is as

follows. For N = 4 in two dimensions, there are three D functions ~D(H), quadratic and

homogeneous in the components of H, generalizing the more familiar one D function for

two-dimensionalN = 2 theories. (They transform as a vector under an SU(2) R symmetry

of the model that will be described later.) The three constants ~r generalize the familiar

Fayet-Iliopoulos interaction of N = 2 theories. The four relevant operators associated with

the A1 singularity are in fact the three components of ~r and the θ angle of the U(1) gauge

theory.

The space of zero energy classical states with H 6= 0 (and therefore φ = 0) is obtained

by setting ~D−~r = 0 and diving by the gauge group U(1). (The combined operation is the

hyper-Kahler quotient [18], which was discovered in precisely the present context.) Let us

carry this out explicitly for the case that ~r = 0. From an N = 2 point of view, the three

D terms are the real and imaginary part of a holomorphic function of chiral superfields

D+ = M1M̃1 +M2M̃2 (2.4)

and the usual N = 2 D term D0 =
∑

i(|M i|2 − |M̃i|2). Dividing by U(1) and setting

D0 = 0 is equivalent (according to geometric invariant theory [19]) to working with the

U(1) invariant holomorphic functions Sij = M iM̃j . Upon setting D+ = 0, there are three

such independent functions, A = M1M̃1 = −M2M̃2, B = M1M̃2, C = M2M̃1. These

obey the identity

A2 +BC = 0. (2.5)

This complex equation in C3 is a standard description of the A1 singularity, so we have

established the fact that the classical moduli space of φ = 0 vacua, at ~r = 0, is R4/Z2.

If one repeats the computation at ~r 6= 0, one gets a non-singular space, exhibiting the ~r

as the three parameters associated with deforming and resolving the singularity. How the

theta angle enters the story will be seen momentarily.

So far we have discussed only the zero energy states of φ = 0. What about zero

energy states of φ 6= 0? Inspection of (2.3) shows that such states exist only if H = 0,

and therefore that one needs also ~r = 0. Classically, these are sufficient requirements, but

quantum mechanically, as explained in [17], one requires also θ = 0. The reason for this is

that on the branch of φ 6= 0 but H = 0, the low energy theory is a free U(1) gauge theory;
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turning on a non-zero theta angle gives a term in the energy |θ/2π|2. So the Coulomb

branch of zero energy states with φ 6= 0, H = 03 exists only for ~r = θ = 0.

Now the Higgs branch – that is, the branch of low energy states with H 6= 0 –

presumably flows for any values of ~r, θ to a (4, 4) conformal field theory in the infrared.

Our question is: for what values of ~r, θ is this conformal field theory singular? As explained

in [17], a singularity can only arise when the vacuum state on the Higgs branch can spread

onto the Coulomb branch. The situation is most easily described if (as in [17]) we work on

a compact K3 manifold that is developing an A1 singularity rather than, as above, working

simply on R4/Z2. (Unfortunately, working on a compact K3 would have made it difficult

to explicitly exhibit the four parameters associated with the singularity.) Then we would

simply say that unless ~r = θ = 0, the theory has a normalizable vacuum state, which ceases

to be normalizable at ~r = θ = 0 when the vacuum can spread onto the Coulomb branch.

On R4/Z2, the vacuum is not normalizable to begin with, but the new non-compactness

from the appearance of the Coulomb branch still gives a singularity.

So we have learned that a singularity appears in the conformal field theory precisely

upon setting all four parameters to zero – and thus the conformal field theory is singular

precisely where, according to [11], the extended gauge symmetry appears. We would like

to learn more about the nature of the singularity.

To do so, as in the (0, 4) problem that was discussed above, we want to look at the

possible global symmetries that can appear in the (4, 4) superconformal algebra in the

infrared. These symmetries are very conveniently seen by starting in six dimensions with

a U(1) gauge multiplet coupled to the two hypermultiplets H i. There is a global SU(2)

symmetry G: the group of linear transformations of the eight real components of the

Hi that preserves the hyper-Kahler structure and commutes with the gauge group. The

fact that G preserves the hyper-Kahler structure means that it commutes with all the

supersymmetries and so will not be seen as an R symmetry under any conditions. There

is also, already in six dimensions, an SU(2) R symmetry K; it acts trivially on the gauge

fields (and non-trivially, therefore, on their fermionic partners), while the bosonic part of

Hi transforms with K = 1/2. Dimensional reduction from six to two dimensions produces

3 I will use the terms “Coulomb branch” and “Higgs branch” that were applied in [16] to related

theories in four dimensions, but the meaning is rather different in two dimensions: because of two-

dimensional infrared divergences, these branches do not parametrize a family of quantum vacua;

rather, they are target spaces of low energy supersymmetric sigma models.
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an extra SO(4) symmetry, which we write as L×L′, with L and L′ being copies of SU(2).

L and L′ act trivially on the bosons in H i (because they are scalars in six dimensions), but

the scalars in the two-dimensional vector multiplet (because of the way they arise from a

vector in six dimensions) transform in the (1/2, 1/2) representation of L× L′.
Now we can analyze the possible R symmetries. A (4, 4) superconformal field theory

will have left and right-moving SU(2) R symmetries. For a conformal field theory arising

from the Higgs branch, these R-symmetries must act trivially on the scalar components of

Hi. From the above description, the symmetries with the right properties are L and L′,

and it is easy to see in perturbation theory (valid for large H) that L and L′ do emerge

as the R symmetries on the conformal field theory of the Higgs branch.

Setting ~r = θ = 0, we can also analyze the singularities of the Coulomb branch. On

the Coulomb branch, the R symmetries must act trivially on the scalars in the vector

multiplet, so L and L′ are forbidden; the only possibility from what we have seen above is

K. Perhaps K decomposes in the infrared into separately conserved left and right-moving

pieces.

Just as in our discussion of the (0, 4) case, the fact that different R symmetries enter

in the superconformal algebra on the different branches must mean that by the time one

flows to a conformal field theory, the branches no longer meet as they do classically. The

most natural way for this to happen is once again that in the conformal field theory limit,

the point H = φ = 0 should be infinitely far away from the rest of the Higgs branch.

So we are led to look for a (4, 4) superconformal field theory, with ĉ = 4, and the

following characteristics. The model should be a sigma model with a four-dimensional

target space that is asymptotic to R4/Z2 at spatial infinity, while also one point has

been deleted from R4/Z2 and in some way projected to infinity. Happily, such a conformal

field theory is known. It is essentially the so-called symmetric five-brane [14], which can be

described as a four-dimensional sigma model with a target space metric that coincides with

the ρ = 0 limit of equation (2.2). This (or more exactly its quotient by Z2 to get the right

asymptotic behavior) has just the properties that we want. (There is a puzzle, however,

about the presence in the symmetric five-brane of a B field with non-zero field strength -

absent for conventional K3’s at least in sigma model perturbation theory. Perhaps it is a

novel non-perturbative effect.)

Our proposal, then, is that at a point of extended gauge symmetry, the singular

behavior of the conformal field theory is that it develops an infinite tube like that of the

symmetric five-brane. Hopefully, this understanding of the singularity may lead in future
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to a better understanding of how extended gauge symmetry comes about. One simple

remark that can be made right away is that, no matter how small the string coupling

constant may be on most of the K3, it blows up (because of the linear dilaton) as one

goes down the infinite tube of the five-brane. Thus, once the K3 in conformal field theory

develops such a tube, there is no further surprise in the fact that – no matter how small

the string coupling constant is – there are quantum effects that do not get turned off. The

place where these effects occur just moves “down the tube” as the string coupling constant

is made smaller. This seems to shed some light on some of the puzzles of the last few

months.

Zero Area?

Finally, I want to resolve a small paradox that this discussion may present. Classically,

as one takes ~r → 0, a two-sphere collapses to zero size – and in the “two-brane” picture, this

is why massless charged gauge bosons appear. At first sight we have lost this explanation

upon replacing R4/Z2 with the symmetric five-brane. But what is written in (2.2) is (at

ρ = 0) the sigma-model metric of the symmetric five-brane. This metric is conformally

flat, as is evident in the way it has been written, and in fact the Einstein metric of the

symmetric five-brane is simply the flat metric on R4/Z2. So the “collapsing two-sphere”

mechanism survives the better understanding of the singularity – but must be implemented

in the Einstein metric.

2.3. Conifolds In Calabi-Yau Threefolds

Now we will – more briefly – discuss conifolds in Calabi-Yau threefolds in a similar

fashion. The general argument really applies to any isolated singularities that will arise by

varying the complex structure of a Calabi-Yau manifold. Via mirror symmetry (or more

explicitly via linear sigma models [17,20]), a similar story can be told for singularities that

arise upon varying Kahler parameters.

We consider a (2, 2) model in two dimensions with chiral superfields P,X, Y,Z, and T

and superpotential

W = P (XY +ZT − ε). (2.6)

For ε = 0, the classical states of zero energy – which are precisely the critical points of W

– are described by

XY + ZT = ε, P = 0. (2.7)
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For ε 6= 0, the equation XY + ZT = ε describes a smooth hypersurface Vε in C4. For

ε = 0, Vε develops a conifold singularity. The singularity does not in itself show that the low

energy conformal field theory is singular; we are familiar with classical singularities (such

as orbifold singularities at θ 6= 0) that do not correspond to singularities in conformal field

theory. What really shows that a singularity appears in the field theory is that precisely at

ε = 0, a second branch of critical points appears, with P 6= 0, X = Y = Z = T = 0. We

will call this the P branch. The vacuum constructed on the original “V branch” spreads

onto the P branch and (even when such a conifold singularity is embedded in a compact

Calabi-Yau manifold) its normalizability is lost. In [20], a pole in Yukawa couplings at

ε = 0 was deduced directly from the appearance of the P branch.

Now let us use the R symmetries to learn a little more about the superconformal field

theories to which these theories presumably flow in the infrared. To get the necessary R

symmetry, 4 we need a holomorphicU(1) action on P,X, Y,Z, T under whichW has charge

two. The only appropriate symmetry, for ε 6= 0, is the one that assigns charge two to P

and charge zero to X,Y,Z, and T . This must therefore be the R symmetry for non-zero

ε, and by continuity it will therefore be the R symmetry on the V branch also at ε = 0.

(That W = 0 for the bosonic fields in X,Y,Z, and T makes it possible for W to be the

R-symmetry on this branch.) Since this symmetry acts non-trivially on the bosonic part

of P , it must be that at ε = 0, by the time one flows to a conformal field theory, the P

branch is disconnected from the V branch. Precisely at ε = 0, the theory has a new R

symmetry – the one under which P is neutral and the other fields all have charge one –

which has the right properties to appear in the superconformal algebra on the P branch.

So we learn again – as in the earlier discussion of (0, 4) and (4, 4) models – that when

one flows to conformal field theory, the various branches are disconnected. As before, the

most plausible interpretation of this is that the sigma model metric of the conformal field

theory at ε = 0 is an incomplete metric, with X = Y = Z = T = 0 being infinitely far

away.

Relation To Quantum Description

4 We need separate left and right-moving R symmetries for a (2, 2) model in two dimensions.

One combination of these (which if one constructs the model by dimensional reduction from four

dimensions arises as the rotation of the two extra dimensions) is present in all models of this kind,

so there is precisely one model-dependent symmetry to be described.
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In each case that we have examined, the target space apparently becomes effectively

non-compact at the point where the conformal field theory is singular. For instance, in

compactification on R4×V , with V a Calabi-Yau three-fold, space-time is four-dimensional

macroscopically as long as V is smooth and compact. But when V acquires a conifold (or

other) singularity, we have argued that the sigma model metric on V becomes incomplete,

strongly indicating that the space-time becomes at least five-dimensional macroscopically,

in the sigma model description. It may be quite different in the Einstein metric. For the

(0, 4) and (4, 4) cases, where the sigma model metric at the point analogous to ε = 0 is

known, precisely one new macroscopic dimension appears in the sigma model metric, but

not in the Einstein metric. For threefolds, we have much less information.

The singularities we have found for K3’s and Calabi-Yau threefolds in this worldsheet

treatment are much more drastic than what has been argued quantum mechanically. Let

λ be the string coupling constant and ε a parameter measuring the distance in coupling

constant space from the singularity. For ε = 0 with λ 6= 0, it has been argued that what

happens at the singularity is that finitely many massless particles appear (charged gauge

bosons or charged hypermultiplets for Calabi-Yau twofolds or threefolds). For ε = λ = 0,

we are instead finding a noncompactness which means that infinitely many particles are

going to zero mass in the low energy description. Turning on quantum mechanics makes the

behavior much gentler; in particular, the effective dimension of space-time is not changed.

Perhaps a better understanding of the singular behavior of the conformal field theory would

enable one to understand in a more a priori fashion what happens quantum mechanically.

There are other reasons, apart from what I have given here, for suspecting that in-

finitely many particles become massless at λ = ε = 0. First of all, some particles must

become massless in the conformal field theory when one sets ε = 0, because for instance

the one loop conformal field theory calculation in [21] develops a singularity at ε = 0.

This singularity somehow comes from massless elementary string states running around

the loop (and not from charged Ramond-Ramond black holes, which are not present in

the conformal field theory!). The charged black holes are probably the only natural way

to get this sort of singularity from the contributions of finitely many particles, so it is not

too surprising that the conformal field theory method of generating this singularity would

turn out to involve infinitely many light states.
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3. Dimensional Reduction Below Four Dimensions

The final subject that I will discuss here concerns an attempt to apply some of the

new string theory ideas directly to nature. Recently, I suggested [22] that the vanishing

of the cosmological constant in nature results from the existence of an interpretation of

the four-dimensional world as a strong coupling limit of a supersymmetric world in three

dimensions. The idea is that a mode which a three-dimensional observer interprets as the

dilaton is interpreted by a four-dimensional observer as the radius of the fourth dimension.

Thus in the strong coupling limit of the three-dimensional theory, the world becomes four-

dimensional and the dilaton is reinterpreted as part of the four-dimensional metric tensor,

so that there is no dilaton in the four-dimensional sense. In three dimensions, for generic

coupling, the cosmological constant vanishes but [23] the bosons and fermions are not

degenerate; the limiting four-dimensional world hopefully inherits these properties.

A crucial question about this scenario is what the dynamics looks like from the three-

dimensional point of view, as one approaches the limit of four dimensions. In particular, one

want to retain the vanishing of the cosmological constant but very few other implications

of three-dimensional supersymmetry. It is not clear precisely how this can work. I will

here discuss instead a more straightforward question, which is what things look like from

the four-dimensional point of view when one is near the four-dimensional limit. That is,

we will consider the dimensional reduction of the real world on R3×S1, and ask what one

sees when the radius R of the S1 is extremely large.

In doing so, we will assume that on R4, the only exactly massless bosons are the

photon and the graviton; one could extend the discussion if one knew what additional

massless bosons to consider. It would similarly be somewhat natural to assume that the

massless fermions are a subset of the known neutrinos, though this is of course far from

certain.

Upon reduction on R3 × S1, the photon becomes a scalar φ and a vector a. The

graviton similarly decomposes as a scalar r (the fluctuating radius of the S1), a vector b,

and a three-dimensional graviton which does not have have any propagating modes. The

intention here is to discuss in turn the dynamics of the modes φ, a, b, and r – taking them

roughly in increasing order of subtlety.

(1) φ is really an angular variable, with 0 ≤ φ ≤ 2π, since it is best interpreted as

the holonomy of the photon around S1. At the classical level, the energy of the vacuum

is independent of φ. Quantum mechanically, as electrons are the lightest charged parti-

cles, the main influence of φ is on the vacuum energy of the filled Dirac sea of electrons.
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This energy is minimized at φ = π [24] so φ will acquire that vacuum expectation value.

Expanding around the minimum, the mass of φ is roughly of order e−πmR with m the

electron mass.

(2) The three-dimensional photon a is massless in perturbation theory. If, however,

as is generally believed, magnetic monopoles exist in nature, then by thinking of the S1

direction as “time,” a time-independent magnetic monopole on R3×S1 is a localized object

that can be interpreted as a kind of instanton. Three-dimensional U(1) gauge theory

with such instantons (“compact QED”) was first studied by Polyakov [25] and has the

remarkable property that the photon acquires a mass – a phenomenon most conveniently

described in terms of a scalar u dual to a. The mass of u is roughly of order exp(−πMR)

with M the mass of the lightest magnetic monopole in nature. If this phenomenon does

occur, as one would expect, then electric charges are subject to not just logarithmic but

linear confinement.

(3) Now we come to the second photon b of the three-dimensional world. Though the

physics involved is not well understood, it is very plausible that also in this case suitable

instantons exist and the b field gets a mass. In this case the charge that would be subject

to linear confinement is the one that comes from rotations of the S1; the modes carrying

momentum in the fourth dimension would be confined!

(4) Finally, we come to the scalar r that measures fluctuations in the radius of the

S1. If the cosmological constant vanishes in four dimensions, then the potential V (r) for

this scalar vanishes for r → ∞. Corrections vanishing as a power of r for r → ∞ can

be computed systematically by evaluating Feynman diagrams involving massless particles

only. The leading correction for r →∞, for instance, is the one-loop Casimir effect of the

massless bosons and fermions in nature, and is a multiple of

−nB − nF
r3

(3.1)

with nB and nF the number of exactly massless bose and fermi helicity states in nature.

Feyman diagrams of massless particles with two or more loops give corrections of higher

order in 1/r. To compute to order 1/r3+n needs to know the effective Lagrangian of the

exactly massless particles in nature including all terms up to dimension 4 + n. Thus, the

more perfectly the low energy effective action of nature is known, the more precisely one

could work out the expansion of V (r) in powers of 1/r.

Without any further theory, one would assume that V (r) is non-zero except in the

limit of r → ∞; we know from experimental bounds on the cosmological constant that
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V (∞) is zero or at least incredibly small. The scenario in [22], however, at least in the form

presented there, implies that V (r) is identically zero. This is indeed the four-dimensional

analog of the three-dimensional statement that because of unbroken supersymmetry the

vacuum energy is zero for any value of the dilaton field. Thus, this scenario makes the

remarkable prediction that the vanishing of the cosmological constant is only the first

of an infinite series of vanishing phenomena that might mystify a low energy observer.

The second prediction is that nB − nF = 0, and subsequent predictions, involving the

r dependence of Feynman diagrams with two or more loops, could be worked out given

sufficient knowledge of the low energy world. This framework, then, certainly has some

predictive power, if not too much.

I would like to thank M. Dine, D. J. Gross, D. Morrison, M. Peskin, M. Reid, N.

Seiberg, S. Shenker, E. Silverstein, and A. Strominger for discussions concerning some of

these matters.
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