§ Lie group and DE

Let X be aset. A one-to-one mapping @ of X onto X is called a bijection.
Let B(X) denote the set of all bijections of X onto X.
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(3.1) 7, =Fla.v),
a solution being by definition a function y = u(z) such that u'(x) =

F(x,u(x)).
Thus a solution is a curve in R> (an integral curve). A transformation
T € B(X) (X = R?) is said to leave the equation (3.1) stable if it

permutes the integral curves.
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and assume we have a l-parameter group @t € R) of differentiable
bijections of R? leaving (3.2) stable.
Consider the vector field on R?
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Here &, is the tangent vector to the orbit g, -pat pe R?. Thinking of
a vector at p = (x,y) as a directional derivative we write the vector field
in the form
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(3.3) bp = &,y = &(x, U)—); + nlx, ui—);.
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The slope of the ray from (0,0) to (r,y) is 2 = tana and the slope of
the tangent to the integral curve through (x,y) is % = tan 3. Since

tan 7 — tan o
1 + tan ca tan 3

tan(F — a) =

(3.6) states that
tan(B —a) = 2° +4°.

This means that the angle 3 — « is constant as (x,y) varies on a circle
with center (0,0). Thus each rotation

(3.7) ot - (r,y) — (rcost — ysint, rsint + ycost)

maps each integral curve into another integral curve, in other words
leaves the equation (3.5) stable. Also the rotations ¢, form a group
(Pr+s = Pr@s). Here we have from (3.7)
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s0 by Lie's theorem
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is an integrating factor. Also
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U(x,y)= arctan(y) —% s fi# U(x,y)=c FIDIEERR Y = xtan(% (x* +y*)+c)
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5 Proof of Lie's Theorem

So far as I know this interesting theorem does not oceur in most recent
books on ordinary differential equations. Older proofs seem a bit obscure
(but take a look at Lie's original proof (Collected Works, Vol. 3)). The
proof in Olver’s book is clean and rigorous but contained in a longer
theory of prolongations.

Below is a short proof. Suppose ¢, is a 1-parameter group leaving the
equation

dy _ Y(@,y)
ir ~ X(z.y)

(5.1)
stable. If U(z,y) = ¢ is a solution we have with ¢, (z,y) = (x¢, ue),

Ulze, ye) =c(t)  (all )

" OU dre O du _
dr dt Oy dt
and by (3.3)
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(5.2) T + a—y?} =c'(0).
Secondly
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5.3 —X+—Y =0.
(5-3) dx N ay

If ¢(0) # 0 we can normalize U such that ¢/(0) = 1. Then (5.2) and

(5.3) imply
oty -Y au X

or Xn—YE& Oy Xn-—Y¢é
50 {X n— Y{j l'is an mteg;ratlng factor for X dy — Y dr =0 as clmmed

On the other ha.nd if e (Dj = D [5 2} [a 3) lmph dyfdr = m‘& so the
integral curves are just the orbits of ;.
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