§ Lie group and DE

Let X be a set. A one-to-one mapping φ of X onto X is called a *bijection*. Let B(X) denote the set of all bijections of X onto X.

$$\frac{dy}{dx} = F(x, y),$$

a solution being by definition a function y = u(x) such that u'(x) = F(x, u(x)).

Thus a solution is a curve in \mathbb{R}^2 (an *integral curve*). A transformation $T \in B(X)$ ($X = \mathbb{R}^2$) is said to leave the equation (3.1) *stable* if it permutes the integral curves.

先把(3.1)式寫成
$$\frac{dy}{dx} = \frac{N(x,y)}{M(x,y)}$$
...(2)

and assume we have a 1-parameter group $\varphi_t(t \in \mathbf{R})$ of differentiable bijections of \mathbf{R}^2 leaving (3.2) stable.

Consider the vector field on R²

$$\Phi_p = \left\{\frac{d(\varphi_t \cdot p)}{dt}\right\}_{t=0} \qquad \qquad \Phi_{\rm p} \qquad \qquad \Phi_{\rm t} \cdot {\rm p}$$

Here Φ_p is the tangent vector to the orbit $\varphi_t \cdot p$ at $p \in \mathbb{R}^2$. Thinking of a vector at p = (x, y) as a directional derivative we write the vector field in the form

$$\Phi_p = \Phi_{x,y} = \xi(x, y) \frac{\partial}{\partial x} + \eta(x, y) \frac{\partial}{\partial y}.$$

定理(Lie 1874)

假設 φ_{ι} 是(2)穩定(stable)的單參數群(1-parameter group),則存在函數 U(x,y)使得

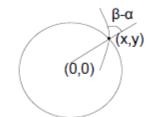
$$\frac{\partial U}{\partial x} = \frac{-N}{M\eta - N\xi}, \frac{\partial U}{\partial y} = \frac{M}{M\eta - N\xi}$$
,且 U(x,y)=const.是(2)式的解

即
$$\frac{Mdy - Ndx}{M\eta - N\xi} = \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy$$
 是一個 exact form

而 $(M\eta - N\xi)^{-1}$ 是 Mdy-Ndx=0 的積分因子

$$[5] \frac{dy}{dx} = \frac{y + x(x^2 + y^2)}{x - y(x^2 + y^2)}$$

$$(3.6) \qquad \frac{\frac{dy}{dx} - \frac{y}{x}}{1 + \frac{y}{x}\frac{dy}{dx}} = x^2 + y^2$$



The slope of the ray from (0,0) to (x,y) is $\frac{y}{x} = \tan \alpha$ and the slope of the tangent to the integral curve through (x,y) is $\frac{dy}{dx} = \tan \beta$. Since

$$\tan(\beta - \alpha) = \frac{\tan \beta - \tan \alpha}{1 + \tan \alpha \tan \beta}$$

(3.6) states that

$$\tan(\beta - \alpha) = x^2 + y^2.$$

This means that the angle $\beta - \alpha$ is constant as (x, y) varies on a circle with center (0, 0). Thus each rotation

$$(3.7) \varphi_t : (x, y) \rightarrow (x \cos t - y \sin t, x \sin t + y \cos t)$$

maps each integral curve into another integral curve, in other words leaves the equation (3.5) stable. Also the rotations φ_t form a group ($\varphi_{t+s} = \varphi_t \varphi_s$). Here we have from (3.7)

$$\Phi_p = \left(\frac{d(\varphi_t \cdot p)}{dt}\right)_{t=0} = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$

so by Lie's theorem

$$[(x - y(x^2 + y^2))x - (y + x(x^2 + y^2))(-y)]^{-1} = (x^2 + y^2)^{-1}$$

is an integrating factor. Also

$$\frac{Mdy - Ndx}{x^2 + y^2} = \left(\frac{x}{x^2 + y^2} - y\right)dy - \left(\frac{y}{x^2 + y^2} + x\right)dx \, \exists \Box \, \frac{\partial U}{\partial x} \, dx + \frac{\partial U}{\partial y} \, dy$$

 $\hat{x} = x \cos t - y \sin t, \hat{y} = x \sin t + y \cos t$

$$(\xi,\eta) = \frac{d}{dt}(\hat{x},\hat{y})\big|_{t=0} = (-y,x)$$

所以
$$X = \xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$$

$$(\frac{xdy - ydx}{x^2 + y^2}) - (ydy + xdx) = 0$$

$$U(x, y) = \arctan(\frac{y}{x}) - \frac{x^2 + y^2}{2} , \quad \text{解 U(x,y)=c 可以寫成 } y = x\tan(\frac{1}{2}(x^2 + y^2) + c)$$
 註
$$\frac{xdy - ydx}{x^2 + y^2} = d(\tan^{-1}\frac{y}{x})$$

5 Proof of Lie's Theorem

So far as I know this interesting theorem does not occur in most recent books on ordinary differential equations. Older proofs seem a bit obscure (but take a look at Lie's original proof (Collected Works, Vol. 3)). The proof in Olver's book is clean and rigorous but contained in a longer theory of prolongations.

Below is a short proof. Suppose φ_t is a 1-parameter group leaving the equation

$$\frac{dy}{dx} = \frac{Y(x, y)}{X(x, y)}$$

stable. If U(x,y) = c is a solution we have with $\varphi_t(x,y) = (x_t,y_t)$,

$$U(x_t, y_t) = c(t)$$
 (all t)

so

$$\frac{\partial U}{\partial x}\frac{dx_t}{dt} + \frac{\partial U}{\partial y}\frac{dy_t}{dt} = c'(t)$$

and by (3.3)

(5.2)
$$\frac{\partial U}{\partial x}\xi + \frac{\partial U}{\partial y}\eta = c'(0).$$

Secondly

$$\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \frac{dy}{dx} = 0$$

so

(5.3)
$$\frac{\partial U}{\partial x}X + \frac{\partial U}{\partial y}Y = 0.$$

If $c'(0) \neq 0$ we can normalize U such that c'(0) = 1. Then (5.2) and (5.3) imply

$$\frac{\partial U}{\partial x} = \frac{-Y}{X\eta - Y\xi}, \ \frac{\partial U}{\partial y} = \frac{X}{X\eta - Y\xi}$$

so $(X\eta - Y\xi)^{-1}$ is an integrating factor for $X\,dy - Y\,dx = 0$ as claimed.

On the other hand, if c'(0) = 0, (5.2)–(5.3) imply $dy/dx = \eta/\xi$ so the integral curves are just the orbits of φ_t .

形如
$$\frac{dy}{dx} = f(\frac{y}{x})$$
的李群是 $\varphi_t: (x, y) = (e^t x, e^t y)$

所以
$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$
 積分因子為 $(y - f(\frac{y}{x})x)^{-1}$