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(a) Given two affine maps g(f) = yf + x and h(t) = wt + z, we have
(g o h)(t) = g(h(t)) = g(wt + 2) = ywt + yz +x.
Therefore the group operation is given by
(x,¥) - (z, w) = (yz + x, yw).

The identity element is clearly e = (0, 1) (corresponding to the identity
map). and hence

(z, w) = (x, }-‘]_l < (vz4+x,yw) =(0,1)

x 1
& (z,w) = (—% T) .

Therefore themaps H x H 3 (g,h)—>g-he Hand H> g+ g '€ H
are smooth, and hence H is a Lie group.



(b) Show that the derivative of the left translation map L, y) : H — H ata
point (z, w) € H is represented in the above coordinates by the matrix

y0
{dL;_r.}'J)fz.wJ - (U 1-"') -

Conclude that the left-invariant vector field XV e X(H) determined by the
vector

-

) d
V:&;a —|—T}a—vEf]ET[[].‘]JH [f,i}ER)

is given by

-

0
Vv .
XH_}.J = {ya + ?”6—‘."

(c) Given V, W € h, compute [V, W].

(d) Determine the flow of the vector field XV, and give an expression for the
exponential mapexp: h — H.
(e) Confirm your results by first showing that H is the subgroup of GL(2)

formed by the matrices
VX
01

with y = 0.

(b) Because

the matrix representation of (d Ly y))z,w) 18

v 0
{d[-{xe}'}]na,ﬂ.f} - (D 1JJ.) .
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Therefore X x.7) has components

(52)6)- ()
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(e) The multiplication of two such matrices is

yxyfwz) _[ywyz+x
01 01) \ o 1 ’

which reproduces the group operation on H. Therefore H can be identified
with the corresponding subgroup of GL(2). Acurvec : (—z, =) — H with
¢(0) = I is then given by
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$4 Group action G 2ZEf > DiffM & M F] M #Y diffeomorphism
G > DiffM 5 &

. p@)=id
2. p(gh)=p(g)p(h)
3. GxM —>M (g,m)— p(g).m isasmooth map

Bian

(1) GL(n,R) acts on R”

(2) O(n,R) actson S"* = R"

(3) Um)actson S*"*<C"

Representation V

geG - assign alinear map p(g):V =V H15 p(g) p(h) = p(gh)



Orbit(#fi&) VmeM - O, ={gm|g G}

Stabilizer(isotropy subgroup #[ETEf) G, ={g€G|gm=m}
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If we had just one symmetry, given by some rotation R: §* — 52, we could
consider its action on the space of complex-valued functions C* (52, C). If we
could diagonalize this operator, this would help us study Agpp: it is a general
result of linear algebra that if A, B are two commuting operators, and A is
diagonalizable, then B must preserve eigenspaces for A. Applying this to pair
R. Agpn. we get that Agp preserves eigenspaces for R, so we can diagonalize
Aphn independently in each of the eigenspaces.

Let S — R’ be the unit sphere. Define the Laplace operator Asph -
C™®(5%) — C™(5?) by Asph [ = (&f}lsz, where f is the result of extending
f to R? — [0} (constant along each ray), and A is the usual Laplace operator
in R3. It is easy to see that Ay, is a second-order differential operator on the
sphere; one can write explicit formulas for it in the spherical coordinates, but
they are not particularly nice.

For many applications, it is important to know the eigenvalues and eigen-
functions of Agpp. In particular, this problem arises in quantum mechanics:
the eigenvalues are related to the energy levels of a hydrogen atom in quan-
tum mechanical description. Unfortunately, trying to find the eigenfunctions by
brute force gives a second-order differential equation which is very difficult to
solve.

However, it is easy to notice that this problem has some symmetry — namely,
the group SO(3.[R) acting on the sphere by rotations. How can one use this
symmetry?

However, this will not solve the problem: for each individual rotation R, the
eigenspaces will still be too large (in fact, infinite-dimensional), so diagonaliz-
ing Agpp in each of them is not very easy either. This is not surprising: after all.
we only used one of many symmetries. Can we use all of rotations R € SO(3, [R)
simultaneously?



This, however, presents two problems.

¢ SO(3,R) is not a finitely generated group, so apparently we will need to use
infinitely (in fact uncountably) many different symmetries and diagonalize
each of them.

e SO(3,R) is not commutative, so different operators from SO(3.[®) can not
be diagonalized simultaneously.

The goal of the theory of Lie groups is to give tools to deal with these (and
similar) problems. In short, the answer to the first problem is that SO(3. ) is in
a certain sense finitely generated — namely, it is generated by three generators,
“infinitesimal rotations™ around x, y, z axes (see details in Example 3.10).

The answer to the second problem is that instead of decomposing the
C>®(§2,C) into a direct sum of common eigenspaces for operators R €
SO(3,[R), we need to decompose it into “irreducible representations™ of
SO(3,R). In order to do this, we need to develop the theory of representa-
tions of SO(3, R). We will do this and complete the analysis of this example in
Section 4.8.

Theorem 3.7. Let G be a real or complex Lie group and g = TG.

(1) exp(x) =1 4+x+... (that is, exp(0) = l and exp_(0): g — T'G =gis
the identity map).

(2) The exponential map is a diffeomorphism (for complex G, invertible ana-
Iytic map) between some neighborhood of 0 in g and a neighborhood of 1
in G. The local inverse map will be denoted by log.

(3) exp((t + s)x) = exp(tx) exp(sx) for any s.t € K.

(4) For any morphism of Lie groups ¢: Gy — G> and any x € g1, we have
exp(@s(x)) = glexp(x)).

(5) ForanyX € G,y € g, we have X exp(y)X ~! = exp(Ad X.y), where Ad
is the adjoint action of G on g defined by (2.4).

Proposition 3.9. Let Gy, G2 be Lie groups (real or complex). If Gy is connected,
then any Lie group morphism @ : G| — Gy is uniquely determined by the linear
map ¢,: T1Gy — T1Go.

A basis in so(3, ) is given by
00 0 0
Je=|0 0 -1}, Jy=10
01 0 —1



The corresponding one-parameter subgroups in SO(3, ) are rotations: exp(t/,)
is rotation by angle f around x-axis, and similarly for y. z.
The commutation relations are given by

[Jx. Iyl = Tz, [y, Jz1 = Jx. [z, Jx] = Jy. (3.20)

A basis in su(2) is given by so-called Pauli matrices multiplied by i:

. 0 i . 0 1 ) i 0
mq:(], [1}) mrg:(_] 0), lUg:(E} —i)' (3.21)

The commutation relations are given by

[iU|, 1'02] = —2iU3,, [iUg, i03] = —Ei(n, [103. iUl] = —21’::2. (3.22]

s0(3,R): elements Jy.Jy.J; are orthogonal to each other, and (Jy.Jy) =
(-’r‘l.u'rx) = [Jae-}z) =2

We can explicitly describe the corresponding subgroups in G. Namely,

1 0 0
exp(t/y) =10 cost —sint
0 sint cost

is rotation around x-axis by angle 7. similarly, J,.J; generate rotations around
v,z axes. The easiest way to show this is to note that such rotations do form
a one-parameter subgroup; thus, they must be of the form exp(#/) for some
J € s0(3,R), and then compute the derivative to find J.

By Theorem 3.7, elements of the form exp(#Jy), exp(tJy), exp(1J;) generate
a neighborhood of identity in SO(3, ). Since SO(3, ) is connected, by Corol-
lary 2.10, these elements generate the whole group SO(3, ). For this reason, it
is common to refer to J r,.f_,,-,.f - as “infinitesimal generators™ of SO(3, ). Thus,
in a certain sense SO(3, &) is generated by three elements.

Theorem 3.25. Let G be a finite-dimensional Lie group acting on a manifold
M, so we have a map p: G — Diff (M ). Then

(1) This action defines a linear map p. : g — Vect(M ).
(2) The map p, is a morphism of Lie algebras: p,[x.v] = [p«(x). p«(v)], where
the commutator in the right-hand side is the commutator of vector fields.



Theorem 3.29. Let G be a Lie group acting on a manifold M (respectively, a
complex Lie group holomorphically acting on a complex manifold M ), and let
meM.

(1) The stabilizer G,, = |{g € G | gm = m} is a closed Lie subgroup in G, with
Lie algebrah = {x € g | p.(x)(m) = 0}, where p.(x) is the vector field on
M corresponding to x.

(2) The map G/G,, — M given by g +— g.m is an immersion. Thus, the
orbit Oy = G - m is an immersed submanifold in M, with tangent space
Tm(‘) =g j' []

We have an isomorphism of Lie algebras su(2) = s0(3.R) given by

i) — —=2J,
ioy = —2Jy (3.25)

ioy — —2J-.

It can be lifted to a morphism of Lie groups SU(2) — SO(3.R). which is a
twofold cover (see Exercise 2.8).

HfE

Let Jy, Jy.J; be the basis in so(3,R) described in Section 3.10. The stan-
dard action of SO(3.R) on R? defines an action of so(3.R) by vector
fieldson R?. Abusing the language., we will use the same notation Jx. Jy. J;
for the corresponding vector fields on R3. Let Agpn = J2 +J2 +J2; this
is a second order differential operator on R, which is us.ua]l-:-,r called the
spherical Laplace operator, or the Laplace operator on the sphere.

(1) Write Agph in terms of x.,y. z. 9y, dy. 0:.

(2) Show that Agp, is well defined as a differential operator on a sphere
S? ={(x.v.2) | ¥ +y?>+z% = 1}.ie.. iff isa function on B3 then
(Aspn f)|g2 only depends on f 2.

(3) Show that the usual Laplace operator A = 32437+ 2 can be written
in the form A = Fl'_s'ﬂsph + Aradial. Where Apgia 1s a differential

operator written in terms of r = /x2 4+ y2 4+ 72 and rd, = x8, +
Viy + z0;.
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(4) Show that Agyy, is rotation invariant: for any function f and g €
SO(3.R), Agpn(gf) = g(Agpnf). (Later we will describe a better
way of doing this.)

This problem is for readers familiar with the mathematical formalism of
classical mechanics.

Let G be a real Lie group and A — a positive definite symmetric bilinear

form on g: such a form can also be considered as a linear map g — g~.
(1) Let us extend A to a left invariant metric on . Consider mechanical

system describing free motion of a particle on G, with kinetic energy
given by A(g, 2) and zero potential energy. Show that equations of
motion for this system are given by Euler’s equations:

Q =ad*v.Q
where v = g~ '¢ € g. Q = Av = g*, and ad* is the coadjoint action:
(ad*xf.y) = —(f.adxy) xyeg feg"

(For G = SO(3.R). this system describes motion of a solid body
rotating around its center of gravity —so called Euler’s case of rotation
of a solid body. In this case, A describes the body’s moment of inertia,
v is angular velocity, and €2 is angular momentum, both measured in
the moving frame. Details can be found in [1]).

(2) Using the results of the previous part, show that if A is a bi-invariant
metric on G, then one-parameter subgroups exp(fx),x € g are
geodesics for this metric.

Representation

Definition 4.1. A representation of a Lie group G is a vector space V together
with a morphism p: G — GL(V).

A representation of a Lie algebra g is a vector space V together with a
morphism p: g — al(V).
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