§ Completely Integrable Systems

 $H \in C^{\infty}(T^*M)$ is a Hamiltonian function , being constant along its Hamiltonian flow \circ

Definition

A function $F \in C^{\infty}(T^*M)$ is said to be a first integral of H if {H ,F}=0

Definition

The functions $F_1, F_2, ..., F_n \in C^{\infty}(T^*M)$ are said to be

- 1. In involution if $\{F_i, F_j\} = 0$
- 2. Independent at $\alpha \in T^*M$ if $(dF_1)_{\alpha}, (dF_2)_{\alpha}, ..., (dF_n)_{\alpha} \in T^*_{\alpha}(T^*M)$ are linearly independent convectors

Proposition

If $F_1, F_2, ..., F_n \in C^{\infty}(T^*M)$ are in involution and are independent at some point

$$\alpha \in T^*M$$
 then $m \leq n$

Definition

The Hamiltonian H is said to be completely integrable if there exist n first integrals

 $F_1, F_2, ..., F_n$ in involution which are independent on a dense open set $U \subset T^*M$

Proposition

Let H be a completely integrable Hamiltonian with first integrals $F_1, F_2, ..., F_n$ in involution , independent in the dense open set $U \subset T^*M$, and such that

 $X_{\scriptscriptstyle F_{\scriptscriptstyle 1}}, X_{\scriptscriptstyle F_{\scriptscriptstyle 2}}, ..., X_{\scriptscriptstyle F_{\scriptscriptstyle n}}\;$ are complete on U $\,$ ' then each nonempty level set

 $L_{\scriptscriptstyle f} \coloneqq \{ \alpha \in U \, \big| \, F_{\scriptscriptstyle i}(\alpha) = f_{\scriptscriptstyle i} \, \} \; \; \text{is a submanifold of dimension n , invariant for the} \;$

Hamiltonian H flow of H , admitting a locally free action of R^n which is transitive on each connected component \circ

後面還有兩個命題 狀況外

定理 Arnold-Liouville

Theorem 7.10 (Arnold–Liouville) Let H be a completely integrable Hamiltonian with n first integrals $F_1, \ldots, F_n \in C^{\infty}(T^*M)$ in involution, independent on the dense open set $U \subset T^*M$. If the connected components of the level sets of the map $(F_1, \ldots, F_n) : U \to \mathbb{R}^n$ are compact then they are n-dimensional tori, invariant for the flow of X_H . The flow of X_H on these tori is a linear flow (for an appropriate choice of coordinates).