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[Elementary Differential Equations and Boundary Value Problems]

by William E. Boyce & Richard C. DiPrima
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2
1. The equation of motion of an undamped pendulum is d?+a)zsin 6=0 >

9

| o let x=6,y= d—g to obtain the system of equations

where @? =

dx
a y
% =—w’sinx
(a) Show that the critical points are (£nz,0),n=0,12,... > and that the system
is almost linear in the neighborhood of each critical point
(b) Show that the critical point (0,0) is a (stable)center of the corresponding
linear system ° The situation is similar to the critical points (£2nz,0) >

n=1,2,3,..What is the physical interpretation of these critical points ?
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(c) Show that the critical point (7,0) is an(unstable) saddle point of the
corresponding linear system ° What conclusion can you draw about the
nonlinear system ? The situation is similar to the critical points
(£(2n-1)7x,0),n=1,2,3,... What is the physical interpretation of these
critical points ?

(d) Choose a value for ” and plot a few trajectories of the nonlinear system in
the neighborhood of the origin = Can you now draw any further conclusion
about he nature of the critical point at (0,0) for the nonlinear system ?

(e) Using the value of @°from part(d) * draw a phase portrait for the pendulum ©

20. (a) By solving the equation for dy/dx, show that the equation of the trajectories of the
undamped pendulum of Problem 19 can be written as

1y + w?(l ~ cosx) =,

where ¢ is a constant of integration,
(b) Multiply Eq. (i) by mL?. Then express the result in terms of 8 to obtain

1, (d8\? .
EmL (?{) +mgL(l1 —cos@) =E, (i1}

where E = mL2c.

(c) Show that the first term in Eq. (ii) is the kinetic energy of the pendulum and that the
second term is the potential energy due to gravity. Thus the total energy E of the pendulum
is constant along any trajectory; its value is determined by the initial conditions.

21. The motion of a certain undamped pendul{nn is described by the equations
dxjdt =y, dy/dt = —4sinx,

If the pendulum is set in motion with an angular displacement A and no initial velocity,
then the initial conditions are x{0) == A4, y(C) = 0.

(a) Let A =0.25 and plot x versus f. From the graph, estimate the amplitude R and
period T of the resulting motion of the pendulum.

(b) Repeat part (a) for A =0.5,1.0,1.5, and 2.0.

(¢) How do the amplitude and pericd of the pendulum’s motion depend on the initial
position A? Draw a graph to show each of these relationships. Can you say anything
about the limiting value of the period as A — 07

(d) Let A = 4 and plot x versus t. Explain why this graph differs from those in parts (a)
and (b). For what value of A does the transition take place?
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22. Consider again the pendulum equations (see Problem 21)

dx/dt =y, dy/dt = —4sinzx.

If the pendulum is set in motion from its downward equilibrium position with angular

velocity v, then the initial conditions are x(0) = 0, ¥{0) = v.

(a) Plot x versus ¢ for v=2 and also for v = 5. Explain the differing motions of the

pendulum that these two graphs represent.

(b) There is a critical value of v, which we denote by v, such that one type of motion

occurs for v < v, and the other for v > v,. Estimate the value of v,.

This problem extends Problem 22 to a damped pendulum. The equations of motion are
dx/dt =y, dy/dt = —4sinx — yy,

where y is the damping coefficient, with the initial conditions x(0) = 0, y(0) = v.

(a) Por y = 1/4 plot x versus f for v =2 and for v = 5. Explain these plots in terms of
the motions of the pendulum that they represent. Also explain how they relate to the
corresponding graphs in Problem 22(a).

(b) Estimate the critical value v, of the initial velocity where the transition from one type
of motion to the other occurs.

(c) Repeat part (b) for other values of y and determine how v, depends on y.

In this problem we derive a formula for the natural period of an undamped nonlinear
pendulum [¢ = 0 in Eq. (10) of Section 9.2]. Suppose that the bob is pulled through a

positive angle & and then released with zero velocity.

(a) We usvally think of 8 and d8/dr as functions of 1. However, if we reverse the roles of
¢ and 8, we can regard ¢ as a function of § and, consequently, can also think of d6/dr as a

function of 8. Then derive the following sequence of equations:

1, d|[[a8y? ,
EmL '(E ]i(aﬂ-) } = -—mgLsmB,

1/ do\?

5m (LE) = migl{cos6 — cosa),
drmfE__
' 2g Jeas8 —cosa

Why was the negative square root chosen in.the last equation?



(b) If T is the natural period of oscillation, derive the formula

T |L f" d6

4 Y2 ), Joos8 —cosa
(c) By using the identities cos9=1-2 sinz(eﬂ) and cosa = 1 — 2 sin’ (o /2), followed
by the change of vartable sin(6/2) = ksin ¢ with k = sin{e/2), show that

dfE[
g /o 1/1—kzsinz¢l

The integral is called the elliptic infegral of the first kind. Note that the period depends
on the ratio L/g and also on the initial displacement « through & = sin(a/2).

(d) By evaluating the integral in the expression for 7', obtain values for T that you can
compare with the graphical estimates you obtained in Problem 21.

28. A generalization of the damped pendulum equation discussed in the text, or a damped
spring-mass system, is the Liénard?® equation

d*x dx
yr + r:(x)E

1f c(x) is a constant and g(x) = kx, then this equation has the form of the linear pendu-

Ium equation [replace sin # with 6 in Eq. (12) of Section 9.2); ctherwise, the damping

force ¢(x) dx/dt and the restoring force g{x) are nonlinear. Assume that ¢ is continuously

differentiable, g is twice continucusly differentiable, and g(0) = 0.

{a) Write the Liénard equation as a system of two first order equaticns by introducing

the variable y = dx/dr.

{b) Show that (0,0) is a critical point and that the system is almost linear in the neighbor-

hood of (0,0).

{c) Show that if¢(0) > 0and g’(0) > 0, then the critical point is asymptotically stable, and

that if ¢(0) < 0 or g’(0) < 0, then the critical point is unstable.

Hint: Use Taylor series to approximate ¢ and g in the neighborhood of x = 0.

+g{x)=0.

27 Lyapunov’s method



