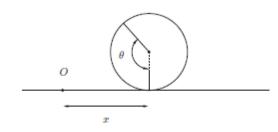
例 1. Wheel rolling without slipping



$$\dot{x} = R\dot{\theta}$$

Configuration space is $R \times S^1$

$$X = R \frac{\partial}{\partial x} + \frac{\partial}{\partial \theta}$$
, the kernel of the 1-

form $\omega = dx - Rd\theta$

 $d\varpi=0$ $\,$ this is a semi-holonomic constraint $\,^{,}$ corresponding to an integrable distribution.

The leaves of the distribution are the submanifolds with equation $x = x_0 + R\theta$

Since $\mu^{-1}\mathcal{R}$ is orthogonal to the constraint for a perfect reaction force \mathcal{R} , the constraint must be in the kernel of \mathcal{R} , and hence $\mathcal{R} = \lambda \omega$ for some smooth function $\lambda : TM \to \mathbb{R}$.

If the kinetic energy of the wheel is

$$K = \frac{M}{2} (v^x)^2 + \frac{I}{2} (v^\theta)^2$$

then

$$\mu\left(\frac{D\dot{c}}{dt}\right) = M\ddot{x}dx + I\ddot{\theta}d\theta.$$