§ 2.1 Twist Properties
Definition
Let (V,Q) be asymplectic vector space > dim V=2n

A subspace E cV issaid to be Lagrangian if its dimension is n and the symplectic

form satisfies Q| =0

A submanifold P of a symplectic manifold is said to be Lagrangian if the tangent space
T,P is a Lagrangian subspace forall xe P

Then for (TM,Q) > the subspace H(#),V(6) are Lagrangian by definition °
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Remark 2.2. More generally, a subspace § C V is said to be isotropic if Q|g, ¢ =
0. Because of the nondegeneracy of 2, an isotropic subspace has at most dimen-
sion n, so Lagrangian subspaces are maximal isotropic subspaces.

Exercise 2.3. Let V be a 2n dimensional linear space and 2 a symplectic form
on V. Prove that there exists a basis {e;, €n+i}1<i<n Of V such that Q(e;, e) =
Q2(en+iren+j) =0and Q(e;, en4j) = §jj for1 <1i, j <n.

The basis of the Exercise 2.3 gives a decomposition of V as the direct sum of
two Lagrangian subspaces.

Exercise 2.4. A subspace E C TyT M is Lagrangian iff JoE = EL.

Exercise 2.5. Let V be a 2n dimensional real vector space, and let 2 be a nonde-
generate two-form in V. Define an action of GL(2n, R) on the set of nondegen-
erate two-forms on V by (af2)(v, w) = Q(av, aw) for all vectors v and w in V.
Using Exercise 2.3 prove that GL(2n, R) acts transitively on the set of nondegen-
erate two-forms on V.

Exercise 2.5. Let V be a 2n dimensional real vector space, and let §2 be a nonde-
generate two-form in V. Define an action of GL(2n, R) on the set of nondegen-
erate two-forms on V by (aQ2)(v, w) = Q(av, aw) for all vectors v and w in V.
Using Exercise 2.3 prove that GL(2n, R) acts transitively on the set of nondegen-
erate two-forms on V.



Exercise 2.6. Let V = C", regarded as a 2n dimensional real vector space, and

define a two-form  on V by Q(v, w) = Re ({(Jv, w)), where v = (vy, ..., vy)
and w = (wy, ..., wy,) are arbitrary elements of C",
j(vlv"'lvl‘l) = (ivl’-'-!ivn)

and (v, w) = > "_, vwy. Prove
1. Q is a nondegenerate two-form,;

2. if g(v, w) = Re({v, w)) is the usual inner product on R> = C", then
L, w) =g(Jv, w),

3. if E C C" is a real subspace with real dimension n, then E is Lagrangian
if and only if (v, w) € R for all vand w in E;

4. if E c C" is a Lagrangian subspace, then a(E) is a Lagrangian subspace
for all a in the unitary group U (n);

5. U(n) acts transitively on the set of Lagrangian subspaces of C".

Exercise 2.7. Let H := {a € GL(2n,R) : a§ = a}. Prove that an element
a € GL(2n,R) lies in H if and only if a*Ja = J, where a* denotes the real

transpose of the transformation a relative to the inner product g on R?". Show

that U (n) is a real subgroup of H of dimension n.

Lemma 2.8. Let N be a submanifold of M and
TNY :={(x,v) e TM : xe N, v L TN}

its normal subbundle. The submanifold T N is Lagrangian.

Proof



Exercise 2.9. Given x € N and v € T, N, the shape operator of N at v is the
symmetric lincar map

A, . TN =- TN

defined as follows. Let V be a C* normal vector field in a neighborhood of x in N
with V(x) = v. Given w € T, N, A, (w) is the orthogonal projection of V,, V onto
Ty N (see for example [Sa)]). Show that T(; ,,TN 1 is given by the set of vectors
£ € Tix.y)TM such that dix (&) € TeN and K1 ,)(§) — Av(dix.0y(§)) €
T.N=L. Use the above, together with the fact that A, is a symmetric linear map, to
give another proof of the last lemma.

Proposition 2.11 (twist property of the vertical subbundle). Let E be a Lagran-
gian subspace of C ToT M. The subset given by

(teR: dep(E)NV(94(6)) # {0}

is discrete.

Proof



