§ Contact forms
$\alpha_{\theta}(\xi):=\ll \xi, G(\theta) \gg=<d_{\theta} \pi(\xi), v>_{x}$ is an one-form of TM

Proposition
$\Omega=-d \alpha$

Lemma

Let $\nabla /$ denote the Riemannian connection of the Sasaki metric。 Then for all
$\eta \in H(\theta)$ we have that $\nabla /{ }_{\eta} G \in V(\theta)$

Lemma 1.25. Let $\nabla /$ denote the Riemannian connection of the Sasaki metric. Then for all $\eta \in H(\theta)$ we have that $\nabla / \eta G \in V(\theta)$.

Proof. Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be an orthonormal frame field that is geodesic at $x=$ $\pi(\theta)$ and defined in a neighborhood U of x. This means $\nabla_{E_{i}} E_{j}(x)=0$, for all i and j. Let $X_{i}(y, w):=\left(E_{i}(y), 0\right)$ be the horizontal lift of the vector field E_{i}, in other words, $X_{i}(y, w)=L_{(y, w)}\left(E_{i}(y)\right)$. The vector fields $\left\{X_{1}, \ldots, X_{n}\right\}$ are orthonormal relative to the Sasaki metric and they span the horizontal subbundle (where defined) in $T M$. Note that it suffices to show that $\nabla / x_{j} G$ belongs to $V(\theta)$ for all j. The geodesic vector field can be written as

$$
G(y, w)=\sum_{i=1}^{n}\left\langle E_{i}(y), w\right\rangle X_{i},
$$

hence

$$
\nabla / x, G=\underbrace{\sum_{i=1}^{n} X_{j}\left\langle E_{i}(y), w\right\rangle X_{i}}_{(i)}+\underbrace{\sum_{i=1}^{n}\left\langle E_{i}(y), w\right\rangle \nabla / x_{j} X_{i}}_{(i i)} .
$$

Since $\pi: T M \rightarrow M$ is a Riemannian submersion, the horizontal component of $\nabla / x_{j} X_{i}(\theta)$ equals $\nabla_{E_{j}} E_{i}(x)=0$, therefore the expression (ii) is vertical. To complete the proof of the lemma we need to show that (i) is vertical. In fact we shall prove that it vanishes.

Let $\alpha_{j}:(-\varepsilon, \varepsilon) \rightarrow M$ be a curve adapted to $E_{j}(x)$ and let Z_{j} be the parallel transport of v along α_{j}. We have

$$
X_{j}\left\langle E_{i}(\cdot), \cdot\right\rangle=\left.\frac{d}{d t}\right|_{t=0}\left\langle E_{i}\left(\alpha_{j}\right), Z_{j}\right\rangle=\left\langle\nabla_{\dot{\alpha}_{j}} E_{i}, v\right\rangle=0 .
$$

Proof of Proposition 1.24. Recall that we can write

$$
d \alpha\left(\xi_{1}, \xi_{2}\right)=\xi_{1} \alpha\left(\xi_{2}\right)-\xi_{2} \alpha\left(\xi_{1}\right)-\alpha\left(\left[\xi_{1}, \xi_{2}\right]\right) .
$$

Using the definition of α and the symmetry of the connection $\nabla /$ we obtain,

$$
\begin{align*}
d \alpha\left(\xi_{1}, \xi_{2}\right)= & \xi_{1}\left\langle\left\langle\xi_{2}, G\right\rangle\right\rangle-\xi_{2}\left\langle\left\langle\xi_{1}, G\right\rangle\right\rangle-\left\langle\left\langle\left[\xi_{1}, \xi_{2}\right], G\right\rangle\right\rangle \tag{1.1}\\
& =\left\langle\left\langle\xi_{2}, \nabla_{\xi_{1}} G\right\rangle\right\rangle-\left\langle\left\langle\xi_{1}, \nabla_{\xi_{2}} G\right\rangle\right\rangle . \tag{1.2}
\end{align*}
$$

We keep the notation of the previous lemma. Let us consider the vector fields $Y_{i}(y, w):=J_{(y, w)}\left(X_{i}(y, w)\right)$. For each (y, w), the vector fields

$$
\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}
$$

form an orthonormal basis of $T_{(y . w)} T M$. Note that [Y_{i}, Y_{j}] is vertical since each Y_{i} is tangent to the fibres of $T M$. Therefore using equation (1.1) and the fact that G is horizontal we get

$$
\left.d \alpha_{\theta}\right|_{V(\theta) \times V(\theta)}=0
$$

From the lemma and equation (1.2) we obtain

$$
\left.d \alpha_{\theta}\right|_{H(\theta) \times H(\theta)}=0 .
$$

To end the proof it suffices to show that, for all i and j, we have

$$
d \alpha_{\theta}\left(X_{i}, Y_{j}\right)=-\Omega_{\theta}\left(X_{i}, Y_{j}\right)
$$

