§ symplectic structure of TM
$j_{\theta}: T_{\theta} T M \rightarrow T_{x} M \times T_{x} M$
$j_{\theta}(\xi)=\left(d_{\theta} \pi(\xi), K_{\theta}(\xi)\right)$
If $\xi=\left(\xi_{h}, \xi_{v}\right) \leftrightarrow j_{\theta}(\xi)$ is an identification，that is $\xi_{h}=d_{\theta} \pi(\xi), \xi_{v}=K_{\theta}(\xi)$
Sasaki metric
$\ll \xi, \eta \gg_{\theta}:=<d_{\theta} \pi(\xi), d_{\theta} \pi(\eta)>_{\pi(\theta)}+\left\langle K_{\theta}(\xi), K_{\theta}(\eta)>_{\pi(\theta)}\right.$
$J_{\theta}: T_{\theta} T M \rightarrow T_{\theta} T M$
$J_{\theta}\left(\xi_{h}, \xi_{v}\right)=\left(-\xi_{v}, \xi_{h}\right)$ a almost complex structure
Define a smyplectic form $\Omega_{\theta}(\xi, \eta):=\ll J_{\theta} \xi, \eta \gg_{\theta}$

Exercise
Show that
1．Ω_{θ} is antisymmetric and nondegenerate
2．For each θ, J_{θ} is a linear isometry of the Sasaki metric
3．J_{θ} is skew symmetric relative to the Sasaki metric
$H(x, v):=\frac{1}{2}\langle v, v\rangle_{x}$ is the energy function
The geodesic vector field is given by $G: T M \rightarrow T T M$
$G(\theta):=\left.\frac{\partial}{\partial t}\right|_{t=0} \phi_{t}(\theta)=\left.\frac{\partial}{\partial t}\right|_{t=0}\left(\gamma_{\theta}(t), \dot{\gamma}_{\theta}(t)\right)$ Where γ_{θ} is the unique geodesic with initial condition $\theta=(x, v)$

命題
$d H=l_{G} \Omega$ or equivalently $d_{\theta} H(\xi)=\Omega_{\theta}(G(\theta), \xi)$ for all $\theta \in T M, \xi \in T_{\theta} T M$證明

