§ symplectic structure of TM

$$\begin{split} j_{\theta} &: T_{\theta}TM \to T_{x}M \times T_{x}M \\ j_{\theta}(\xi) &= (d_{\theta}\pi(\xi), K_{\theta}(\xi)) \\ \text{If } \xi &= (\xi_{h}, \xi_{v}) \leftrightarrow j_{\theta}(\xi) \text{ is an identification , that is } \xi_{h} &= d_{\theta}\pi(\xi), \xi_{v} = K_{\theta}(\xi) \\ \text{Sasaki metric} \end{split}$$

$$<<\xi,\eta>>_{\theta}:=_{\pi(\theta)}+_{\pi(\theta)}$$

$$\begin{split} J_{\theta} : & T_{\theta}TM \to T_{\theta}TM \\ J_{\theta}(\xi_h, \xi_v) = (-\xi_v, \xi_h) \text{ a almost complex structure} \\ & \text{Define a smyplectic form } \Omega_{\theta}(\xi, \eta) := << J_{\theta}\xi, \eta >>_{\theta} \end{split}$$

Exercise

Show that

1. Ω_{θ} is antisymmetric and nondegenerate

2. For each θ , J_{θ} is a linear isometry of the Sasaki metric

3. J_{θ} is skew symmetric relative to the Sasaki metric

 $H(x,v) \coloneqq \frac{1}{2} < v, v >_x$ is the energy function

The geodesic vector field is given by $G:TM \rightarrow TTM$

 $G(\theta) \coloneqq \frac{\partial}{\partial t}\Big|_{t=0} \phi_t(\theta) = \frac{\partial}{\partial t}\Big|_{t=0} (\gamma_{\theta}(t), \gamma_{\theta}(t)) \quad \text{Where } \gamma_{\theta} \text{ is the unique geodesic with initial condition } \theta = (x, v)$

命題

 $dH = \iota_G \Omega$ or equivalently $d_{\theta} H(\xi) = \Omega_{\theta}(G(\theta), \xi)$ for all $\theta \in TM$, $\xi \in T_{\theta}TM$ 證明