§ 1.31 The geometry of tangent bundle 切叢上的向量場是微分幾何、大域分析、數學物理的基本概念。 A spray is a vector field H on the tangent bundle TM that... And what is a geodesic spray ?

Vector fields on a tangent bundle can be considered as an underlying geometric structure for the theory of second-order differential equations \circ

The semispray theory has been used in the calculus of variation on manifolds to characterize extremum curves of a variational functional as integral curves of the Hamilton or Euler-Lagrange vector fields \circ

Sprays and semisprays also provide a natural framework for extension of classical results of analytical mechanics to contemporary mechanical problems and stimulate a broad research in the global theory of nonconservative systems , symmetries , and the constraint theory \circ

 $T_{\theta}TM = H(\theta) \oplus V(\theta)$,我們在 TM 上定義一個 metric 使得 $H(\theta)$ 與 $V(\theta)$ 互相垂直,稱為 Sasaki metric。

建立 TTM 水平與垂直的經典(canonical)子切叢,在 TM 上取 Sasaki metric。

 $\pi: TM \to M \quad , \quad \theta = (x, v) \in TM$

 $\pi(\theta) = x$ (projection) , ∇ is the Levi-Civita connection on M given by the metric g °

Using π and ∇ , we decompose $T_{\theta}TM$ into vertical and horizontal subbundles。 切叢 TM 在 $\theta = (x, v) \in TM$ 的切空間分解成垂直與水平兩個子切叢。

Then $d_{\theta}\pi: T_{\theta}TM \to TM$ And $V(\theta) = \ker(d_{\theta}\pi)$ is the tangent space to the fiber $T_{x}M$ at the point θ
$$\begin{split} H(\theta) &= \ker K_{\theta} \text{ , where } K_{\theta} : T_{\theta}TM \to T_{x}M \text{ is a linear map defined in terms of } \nabla \\ \text{Then } T_{\theta}TM &= H(\theta) \oplus V(\theta) \\ \text{and we get an isomorphism } T_{\theta}TM \to T_{x}M \times T_{x}M \text{ given by } \xi \to (d_{\theta}\pi(\xi)), K_{\theta}(\xi)) \\ \text{Finally we define the form } \omega \text{ on TM by setting} \\ \omega_{\theta}(\xi,\eta) &= K_{\theta}(\xi), d_{\theta}\pi(\eta) > - < d_{\theta}\pi(\xi), K_{\theta}(\eta) > \text{ for all } \xi, \eta \in T_{\theta}TM \\ \text{Then } \omega \text{ is skew-symmetric , nondegenerate and exact , and hence closed , so} \end{split}$$

 (TM, ω) is a symplectic manifold \circ

Theorem

We define the function $H:TM \to R$ by $H(x,v) = \frac{1}{2} \langle v,v \rangle_x$, and let G denote the vector field on TM obtained from the geodesic flow, then G is the Hamiltonian vector field for H \circ That is $dH(\varsigma) = \omega(\varsigma, G)$ for all $\varsigma \in TTM$

Thus \cdot the geodesic flow is the Hamiltonian flow of H on (TM, ω) \cdot so it makes sense to speak of the integrability or nonintegrability of the geodesic flow on a

Examples of manifolds with integrable geodesic flow

§ The classical examples

Riemannian manifold •

- 1. Flat metric on R^n, T^n
- 2. Surfaces of revolution
- 3. Left-invariant metric on SO(3)
- 4. n-dimensional ellipsoids with different principal axes

§ recent examples

Thimm method

Theorem 3.2 (Thimm). The following manifolds admit Riemannian metrics with integrable geodesic flows:

- Real and complex Grassmannians
- Distance spheres in $\mathbb{C}P^{n+1}$
- SU(n+1)/SO(n+1)
- SO(n+1)/SO(n-1)
- $\mathbb{C}H^n = U(n,1)/U(n) \times U(1)$
- U(n+1)/O(n+1), which can be viewed as the Lagrangian subspaces of a symplectic vector space

後面有很多內容 略

Conjecture

Let M be a compact Riemannian manifold whose geodesic flow is integrable . Then $\pi_1(M)$ has polynomial growth \circ Moreover \cdot if $\pi_1(M)$ is finite \cdot then M is rationally elliptic •

Conjecture

Let M be a Riemannian manifold with integrable geodesic flow such that the integrals are real analytic , then the topological entropy of the geodesic flow is zero .

Q:

Suppose that M admits metrics with integrable geodesic flow . Can we classify such metric?

§ Connection map K Let $\xi \in T_{\theta}TM$

 $z: (-\varepsilon, \varepsilon) \to TM \quad \text{be a curve with} \begin{cases} z(0) = \theta \\ \vdots \\ z(0) = \xi \end{cases}$

which rise a curve $\alpha: (-\varepsilon, \varepsilon) \to M$, with $\alpha := \pi_0 z$, and a vector field Z along α equivalently $z(t) = (\alpha(t), Z(t))$ Def $K:TTM \to TM$ by $K_{\theta}(\xi) := (\nabla_{\alpha} Z)(0)$ and $H(\theta) := \ker K_{\theta}$

Lemma

- 1. K_{θ} is well defined
- $K_{
 m heta}$ is linear 2.

另一種說法是

 $TTM = H \oplus V \quad , \ \ \downarrow \models V = \pi^*TM \quad , \ \ H = \ker(\pi^*\nabla_{\underline{\xi}}) \quad , \ \ \xi \in \chi_{TM}$

And $\pi^* \nabla_{\pi^* X} \xi = \pi^* X$

A Riemannian metric on TM is a (smoothly varying) choice of inner product on the double tangent space T_vTM for each $v \in TM$. Since $\pi: TM \to M$ is a vector bundle over M, each T_vTM has as a subspace the vertical tangent space V_nTM , which consists of the velocity vectors of curves in the vector space $T_{\pi(v)}M$, and thus can be canonically identified with T_vM . The Levi-Civita connection of (M, g) provides a canonical horizontal subspace H_vTM , which consists of the velocity vectors of curves $(\gamma(t), V(t)) \in TM$ such that $v = (\gamma(0), V(0))$ and $\nabla_{\dot{\gamma}} V = 0$.

The upshot of all this is that we have a direct sum decomposition $TTM = VTM \oplus HTM$, with canonical isomorphisms $V_vTM \simeq T_{\pi(v)}M$ (described earlier) and $H_vTM \simeq T_{\pi(v)}M$ (by sending the velocity of (γ, V) to the velocity of γ). If this isn't intuitive, think about the Euclidean case - if you have a tangent vector v to $p = \pi(v) \in \mathbb{R}^n$, then the directions you can move it decouple in to one copy of \mathbb{R}^n for the motion of the basepoint and another copy for the motion of the vector.

The Sasaki metric can then be naturally defined by declaring $V_v TM$ and $H_v TM$ to be orthogonal, with the metric on each factor just being the pullback of g from $T_{\pi(v)}M$ via the canonical isomorphisms.

This construction works for any vector bundle E (over a Riemannian manifold M) equipped with a fibre metric and compatible connection: the vertical tangent spaces take the fibre metric from E, while the horizontal spaces (as defined by the connection) take the metric from TM. I have seen this general construction called the *Kaluza-Klein* metric.

Another equivalent way of constructing the horizontal subbundle is by means of the *horizontal lift*

$$L_{\theta}: T_{x}M \to T_{\theta}TM,$$

which is defined as follows ($\theta = (x, v)$). Given $v' \in T_x M$ and $\alpha : (-\varepsilon, \varepsilon) \to M$ an adapted curve to v', let Z(t) be the parallel transport of v along α . Let σ : $(-\varepsilon, \varepsilon) \to TM$ be the curve $\sigma(t) = (\alpha(t), Z(t))$. Then

$$L_{\theta}(v') := \dot{\sigma}(0) \in T_{\theta}TM.$$

It is immediate from the definition of parallel transport that $K_{\theta}(L_{\theta}(v')) = 0$, for all $v' \in T_x M$.

Lemma

- 1. L_{θ} is well defined
- 2. L_{θ} is linear
- 3. $\ker(K_{\theta}) = im(L_{\theta})$

From the lemma we conclude that $T_{\theta}TM = H(\theta) \oplus V(\theta)$ And that the map $j_{\theta}: T_{\theta}TM \to T_{x}M \times T_{x}M$ given by $j_{\theta}(\xi) = (d_{\theta}\pi(\xi), K_{\theta}(\xi))$ is a linear isomorphism \circ

用如此分解 $T_{\theta}TM = H(\theta) \oplus V(\theta)$ 我們在 TM 上定義一個 metric 使得 $H(\theta)$ 與 $V(\theta)$ 互相垂直,稱為 Sasaki metric

 $\langle \langle \xi, \eta \rangle \rangle = \langle d_{\theta}\pi(\xi), d\theta\pi(\eta) \rangle_{\pi(\theta)} + \langle K_{\theta}(\xi), K_{\theta}(\eta) \rangle_{\pi(\theta)}$

§ Sasaki metric

If (M , g) is a Riemannian manifold , then we have an associated canonical torsion-free connection $\nabla~$ on M $\,\circ\,$

From now on ∇ is the Levi-Civita connection and R denotes its curvature tensor \circ With such connection one defines the Sasaki metric on the manifold TM :

$$g \coloneqq \pi^* g \oplus \pi^* g$$

It follows immediately that $\nabla^* g = 0$

(M,g) is a Riemann manifold, then

(TM, g) is a Riemann manifold with Sasaki metric g

 $d\sigma^2 = g_{ij}dx^i dx^j + g_{ij}Dv^i Dv^j$ where D is the covariant derivative $Dv^i = dv^i + \Gamma^i_{jk}v^j v^k$

In components, $\tilde{g}_{jk} = g_{jk} + g_{\alpha\gamma}\Gamma^{\alpha}_{\mu j}\Gamma^{\gamma}_{\eta k}v^{\mu}v^{\eta}$ [Sasaki metric]

The geodesic vector field $G:TM \rightarrow TTM$ is given by

 $G(\theta) \coloneqq \frac{\partial}{\partial t}\Big|_{t=0} \phi_t(\theta) = \frac{\partial}{\partial t}\Big|_{t=0} (\gamma_{\theta}(t), \gamma_{\theta}(t))$ Where γ_{θ} is , as usual , the unique geodesic with initial condition $\theta = (x, v)$

But , note that $t \rightarrow \gamma_{\theta}(t)$ is the parallel transport of v along γ_{θ} °

Therefore , $G(\theta) = L_{\theta}(v)$, or equivalently , $G(\theta) = L_{\theta}(v) = (v, 0)$ using the identification $j_{\theta} \circ$