§ 1.31 The geometry of tangent bundle
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A spray is a vector field H on the tangent bundle TM that...

And what is a geodesic spray ¢

Vector fields on a tangent bundle can be considered as an underlying geometric structure
for the theory of second-order differential equations °

The semispray theory has been used in the calculus of variation on manifolds to
characterize extremum curves of a variational functional as integral curves of the Hamilton
or Euler-Lagrange vector fields °

Sprays and semisprays also provide a natural framework for extension of classical results
of analytical mechanics to contemporary mechanical problems and stimulate a broad
research 1n the global theory of nonconservative systems * symmetries * and the constraint
theory °
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7:TM > M » =(x,v)eTM

7(60) =X (projection) - V is the Levi-Civita connection on M given by the metric
g o

Using 7= and V » we decompose T,TM into vertical and horizontal subbundles °
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Then d,z:T,TM ->TM
And V(0)=Kker(d,z) isthe tangent space to the fiber T,M at the point &



H(0)=kerK, > where K,:T,TM —-TM is a linear map defined in terms of V
Then T,TM =H (@) ®V (0)

and we get an isomorphism T,TM T M xT M given by & — (d,z(£)),K,(£))
Finally we define the form @ on TM by setting

w,(8,1) =<K, (£),d,7(17) > =< dy7(S), Ky (17) > forall &, eT,TM

Then w is skew-symmetric °* nondegenerate and exact * and hence closed ’ so
(TM, @) is a symplectic manifold °

Theorem
We define the function H:TM — R by H(X,Vv) :%<v,v > > and let G denote

the vector field on TM obtained from the geodesic flow > then G is the Hamiltonian
vector field for H o
Thatis dH(¢)=w(s,G) forall ¢eTTM

Thus - the geodesic flow is the Hamiltonian flow of Hon (TM, ) - so it makes

sense to speak of the integrability or nonintegrability of the geodesic flow on a
Riemannian manifold °

Examples of manifolds with integrable geodesic flow
§ The classical examples

1. Flat metricon R",T"

2. Surfaces of revolution

3. Left-invariant metric on SO(3)

4

n-dimensional ellipsoids with different principal axes

§ recent examples

Thimm method

Theorem 3.2 (Thimm). The following manifolds admit Riemannian metrics with
integrable geodesic flows:

e Real and complex Grassmannians

e Distance spheres in CP"*1

e SU(n+1)/SO(n+1)

e SO(n+1)/SO(n—1)

e CH"=U(n,1)/U(n) x U(1)

e Un+1)/O(n+ 1), which can be viewed as the Lagrangian subspaces of a
symplectic vector space
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Conjecture
Let M be a compact Riemannian manifold whose geodesic flow is integrable °
Then 7,(M) has polynomial growth - Moreover » if 7,(M)is finite > then M is

rationally elliptic

Conjecture
Let M be a Riemannian manifold with integrable geodesic flow such that the integrals
are real analytic > then the topological entropy of the geodesic flow is zero °

Q:
Suppose that M admits metrics with integrable geodesic flow °

Can we classify such metric ¢

§ Connection map K
Let £eT,TM

z(0)=¢
2(0)=¢
which rise a curve «a:(-¢,&) > M > with a =7,z > and a vector field Zalong o

equivalently z(t) = (a(t), Z(t))
Def K:TTM -TM by K, (&) =(V,Z)(0) and H(O) =kerK,

Z:(—£,&) >TM be a curve with

Lemma
1. K, iswelldefined

2. K, islinear

A

TIM=H®V » HfV =72TM > H=ker(z'VE) » €y
And 7'V . &=7"X

A Riemannian metric on T M is a (smoothly varying) choice of inner product on the double tangent
space T,T M for each v € TM. Since 7 : TM —» M is a vector bundle over M, each T},T M has as
a subspace the vertical tangent space V,, T M, which consists of the velocity vectors of curves in the
vector space T'r(,) M, and thus can be canonically identified with 7, M. The Levi-Civita connection

of (M, g) provides a canonical horizontal subspace H, 7'M, which consists of the velocity vectors
of curves (y(t), V(t)) € TM such thatv = (y(0), V(0)) and V;V = 0.



The upshot of all this is that we have a direct sum decomposition TTM = VT'M & HT M, with
canonical isomorphisms V,TM ~ T, M (described earlier) and H,TM =~ Ty,) M (by sending
the velocity of (y, V') to the velocity of 7). If this isn't intuitive, think about the Euclidean case - if
you have a tangent vector v to p = m(v) € R", then the directions you can move it decouple in to
one copy of R™ for the motion of the basepoint and another copy for the motion of the vector.

The Sasaki metric can then be naturally defined by declaring V, TM and H,T' M to be orthogonal,
with the metric on each factor just being the pullback of g from T, M via the canonical

isomorphisms.

This construction works for any vector bundle E (over a Riemannian manifold M) equipped with a
fibre metric and compatible connection: the vertical tangent spaces take the fibre metric from F,
while the horizontal spaces (as defined by the connection) take the metric from T'M. T have seen

this general construction called the Kaluza-Klein metric.

Another equivalent way of constructing the horizontal subbundle is by means
of the horizontal lift

which is defined as follows (8 = (x, v)). Givenv' €e M anda : (—¢,6) > M
an adapted curve to v', let Z(t) be the parallel transport of v along «. Let o :
(—¢€,&) > TM be the curve o (1) = (a(t), Z(2)). Then

Lo(v) :=6(0) € ToTM.

It is immediate from the definition of parallel transport that Kg(Lg(v")) = 0,
forall v' € T\ M.

Lemma

1. L, iswelldefined
2. Lyislinear

3. ker(K,)=im(L,)

From the lemma we conclude that T,TM =H () ®V (6)
And thatthe map j,:T,TM ->T M xT, M givenby j,(&)=(d,z($), K,(£))

is a linear isomorphism o
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§ Sasaki metric

If M, g) is a Riemannian manifold > then we have an associated canonical torsion-free
connectionV on M e

From now on V 1s the Levi-Civita connection and R denotes its curvature tensor °
With such connection one defines the Sasaki metric on the manifold TM -
g=719g®r’g

It follows immediately that Vg =0

(M ,g) 1s a Riemann manifold > then

(TM, é) 1s a Riemann manifold with Sasaki metric é

do? =g;dx'dx’ + g;Dv'DV! where D is the covariant derivative DV' =dv' +T", vIV®

In components * g =9, +9,, 75,7V’ [Sasaki metric]

The geodesic vector field G:TM —TTM s given by
6(O) =20 th(0) =2 | s (7,07, (1)
ot ot
Where 7, is > asusual ° the unique geodesic with initial condition & = (X,V)

But » note that t — y,(t) is the parallel transport of v along ¥, °

Therefore » G(0) = L,(v) * or equivalently » G(6) = L,(v) = (v,0) using the
identification j, °


https://math.stackexchange.com/questions/2373967/why-is-the-sasaki-metric-natural

