§ 6.4 General Relativity

Gravity can be introduced in Newtonian mechanics through the symmetric Cartan connections, which preserves Galileo spacetime structure .

A natural idea for introducing gravity in special relativity is then to search for symmetric connections preserving the Minkowski inner product •

The Minkowski spacetime is a Lorentzian manifold •

If $c: I \rightarrow M$ is a geodesic, then $\langle c, c \rangle$ is constant, as

$$\frac{d}{ds} \stackrel{\cdot}{<} \stackrel{\cdot}{c(s)} \stackrel{\cdot}{,} c(s) \ge 2 < \frac{Dc(s)}{ds}, c(s) \ge 0$$

A geodesic is called

(1)timelike $\langle c, c \rangle < 0$ We take timelike geodesic to represent the free-falling motions of massive particles • This ensures that the equivalence principle holds •

(2)null $\langle c, c \rangle = 0$ Null geodesics will be taken to represent the motions of light rays •

(3)spacelike
$$\langle c, c \rangle > 0$$

In timelike case \cdot the proper time measured by the particles between events c(a) and c(b) is $\tau(c) = \int_a^b |\dot{c}(s)| ds$, where $|v| = |\langle v, v \rangle|^{\frac{1}{2}}$ for any $v \in TM$

Definition

The Lorentzian manifold (M,g) is said to be a vacuum solution of the Einstein field equation if its Levi-Civita connection satisfies Ric=0

General Einstein field equation

$$Ric - \frac{S}{2}g = 8\pi E$$

Where $S = \sum_{\mu,\nu=0}^{3} g^{\mu\nu}R_{\mu\nu}$ is the scalar curvature and E is the so-called energy

momentum tensor of the matter content of the spacetime