§ Smooth submanifolds

A manifold P is a submanifold of a manifold M provided :

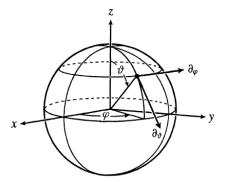
- 1. P is a subset of M , and the inclusion map $j: P \rightarrow M$ is smooth
- 2. The differential maps of j are injective (that is $(dj)(v) = 0 \Rightarrow v = 0$)
- 3. P is a topological subspace of M (that is , fas the relative topology)

For a submanifold P , it is customary to ignore dj and consider $T_p(P)$ to be a vector

subspace of $T_p(M) \circ$

If P has dimension one less n=dim M it is called a hypersurface of M .

Spherical coordinates



Let S^2 be the sphere of unit radius in $R^3 \, \circ \,$ Then spherical coordinates of R^3 retricted to S^2 give coordinates θ, φ on $S^2 \, \circ$

FIGURE 1.11. Spherical coordinates ϑ , φ on the unit 2-sphere.

§ Foliations 葉理 岩石中的纖維狀組織

A distribution(平面場) Π of dimension k on a smooth manifold M is a smooth field of tangent k-planes on M。

A submanifold P of M such that $T_p(P) = \prod_p$ for all $p \in P$ is called an integral

manifold of $\,\Pi\,$ $\circ\,$ If through every point of M there is a integral manifold , then $\,\Pi\,$ is integrable $\,\circ\,$

We say that a vector field V is in a distribution Π if $V_p \in \Pi_p$ for all $p \in M$

§ Frobenius Theorem

A distribution Π on M is integrable if and only if whenever vector fields X , Y are in Π , their bracket [X,Y] is also in Π .

p.62