§ Gradient Ricci solitons

A gradient Ricci soliton (M, g, f, λ) satisfying $Ric(g) + \nabla^2 f = \frac{\lambda}{2}g$, where $\lambda \in R$ of is called the potential function o

A Ricci soliton structure is (M, g, X, λ) with $Ric(g) + \frac{1}{2}L_X g = \frac{\lambda}{2}g$

If f is a function $\nabla f = df$, in local coordinates, $\nabla_i f := (df)_i = \frac{\partial f}{\partial x^i}$ and

$$\nabla^i f := (\nabla f)^i = g^{ij} \nabla_i f \circ$$

(*) simplifies to $Ric(g) + \nabla^2 f = \frac{\lambda}{2} g$ since $L_{\nabla f} g = 2\nabla^2 f$, here ∇^2 denote the Hessian \circ These are so-called gradient Ricci solitons \circ

$$Ric(g) + \nabla^2 f = \frac{\lambda}{2} g$$
 and $L_{\nabla f} g = 2\nabla^2 f$ goes to $-2Ric(g) = L_{\nabla fg} - \lambda g \cdots (*)$

The left-side of the equation is the velocity tensor for Hamilton Ricci flow $^{\circ}$ (*) is an underdetermined system of PDEs $^{\circ}$ the analysis of (*) generally uses the techniques from elliptic and parabolic PDE $^{\circ}$ from the comparison geometry of Ricci curvature and from Ricci flow $^{\circ}$

A shrinking soliton (M,g(t)) $0 \le t < T$ is said to be a gradient shrinking soliton if the vector field X is a gradient of a smooth function on M \circ

Proposition:

(M,g(0)) is a complete Riemannian manifold , a smooth function $f:M\to R$, and a constant $\lambda>0$ such that $-Ric(g(0))=Hess(f)-\lambda g(0)$

Then there is T>0 and a gradient shrinking soliton (M,g(t)) defined for $0 \le t < T$

Since
$$L_{\nabla f} g(0) = 2Hess(f)$$
, $X = \nabla f$

Propsition:

 (M, g, X, λ) is a Ricci soliton, if K is a Killing vector field then $(M, g, K + X, \lambda)$ is also a Ricci soliton.

Two Ricci soliton structures $(M_i, g_i, X_i, \lambda_i)$ are equivalent if $\lambda_1 = \lambda_2$ and the underling Riemannian manifolds (M_i, g_i) are isometric \circ

An isometry $\phi: M_1 \to M_2$ need not pull back X_2 to $X_1 \circ \operatorname{But} \phi^* X_2 - X_1$ at least be

a Killing vector field($\mbox{ED}\,L_{(\phi^*X_2-X_1)}g_1=0$) $^\circ$

§ 1. [Ricci soliton equation]