Ricci flow and the Poincare conjecture Gang Tian

A Ricci soliton is a special solution to the Ricci flow $\,^{\circ}$ a geometric flow that evolves a Riemannian metric on a manifold $\,^{\circ}$ It is a generalization of an Einstein metric and plays a significant role in understanding the behavior of the Ricci flow and the geometry of manifolds $\,^{\circ}$

A Riemannian metric g on a manifold M is called a Ricci soliton if there exists a smooth vector field X on M and a constant $\lambda \in \mathbf{R}$ such that :

$$\operatorname{R}ic(g) + \frac{1}{2}L_{X}g = \lambda g$$

Ricci solitons are important because:

1. They arise as fixed points (in the space of metrics modulo scalings and diffeomorphisms) or self-similar solutions(自相似解) of the Ricci flow。Ricci solitons and self-similar solitons are two sides of the same coin。

Proposition 2.2 (Canonical form, I). Let (\mathcal{M}^n, g_0) be a Riemannian manifold.

- (a) Suppose that $g(t) = c(t)\phi_t^*g_0$ satisfies the Ricci flow on $\mathcal{M}^n \times (\alpha, \omega)$ for some positive smooth function $c: (\alpha, \omega) \to \mathbb{R}$ and smooth family of diffeomorphisms $\{\phi_t\}_{t \in (\alpha,\omega)}$. Then, for each $t \in (\alpha,\omega)$, there is a vector field X(t) and a scalar $\lambda(t)$ such that $(\mathcal{M}^n, g(t), X(t), \lambda(t))$ satisfies the Ricci soliton equation (2.1).
- (b) Suppose that (Mⁿ, g₀, X, λ) satisfies the Ricci soliton equation (2.1) for some smooth vector field X and constant λ. Then, for each x₀ ∈ Mⁿ, there is a neighborhood U of x₀, an interval (α, ω) containing 0, a smooth family φ_t: U → Mⁿ of injective local diffeomorphisms, and a smooth positive function c: (α, ω) → ℝ such that g(t) = c(t)φ_t*g₀ solves the Ricci flow on U × (α, ω) with g(0) = g₀.

[001RicciSolitonEquation p.4]

在數學與物理中,自相似解指的是形狀在演化過程中保持不變的解,僅僅是透過縮放(scaling)、平移(translation)或其他對稱變換來演化。例如,在偏微分方程或幾何流(Geometric Flows)中,自相似解通常表示某個系統以特定方式發展但不改變其基本結構。

定義 若一個幾何流(例如 Ricci flow) $\frac{\partial g}{\partial t} = -2Ric(g)$ 的某個解滿足 $g(t) = \rho(t)\varphi_{\cdot}^*g(0)$ 則稱 g(t)為自相似解。

其中 $\rho(t)$ 是一個依賴於時間的縮放因子(scaling factor), φ_t 是一個依賴於時間的座標變換(diffeomorphism)。

這些解在 Ricci 流中就是 Ricci Soliton,因為它們滿足: $Ric(g) + L_v g = \lambda g$ 這表明,在 Ricci 流的演化過程中,幾何形狀基本不變,只是以某種方式變換。

- 2. They provide insights into the singularities and long-time behavior of the Ricci flow \circ
- 3. They are used in the study of the topology and geometry of manifolds, particularly in the context of the Poincaré conjecture and Thurston's geometrization conjecture °

分類:

- 1. 收縮 *λ>0*
- 2. 靜態 $\lambda = 0$
- 3. 膨脹 λ<0

Examples:

1. Gaussian Soliton:On Euclidean space R^n ,the flat metric is a gradient shrinking soliton。 $g_{ij}=\delta_{ij}, V=\frac{x}{2}, \lambda=1$,對應的 Ricci flow 為 $\frac{\partial g}{\partial t}=-2Ric(g)$

 $g_{ij}(t) = (1-2\lambda t)g_{ij}(0)$,當 $\lambda > 0$ 時,這個解會隨時間縮小,導致奇點形成。

Gaussian cylinder(柱狀孤立子): $M = R \times S^{n-1}$, $g = dx^2 + e^{2x}g_{round}$ 是一膨脹的 Ricci soliton。 Ricci tensor 滿足 $Ric(g) + L_v g = \lambda g$

其中 $V = \frac{\partial}{\partial x}$,對應於沿 x 方向的自相似膨脹。

- 2. Shrinking round spheres
- 3. Einstein manifolds

(M,g) with $Ric(g) = \frac{1}{2}\lambda g$ of constant scalar curvature $\frac{n\lambda}{2}$, we may associate a Ricci soliton structure of the form (M,g,f,λ) with f=constant \circ

If a Ricci soliton (M,g,X,λ) is Eiestein with constant $\frac{\lambda}{2}$, then $L_Xg=\frac{1}{2}g-Ric(g)=0 \text{ i.e. X is a Killing vector field } \circ$

4. Cigar Soliton: A complete, non-compact steady soliton in two dimensions •

這是二維非緊致流形上的 Steady Ricci Soliton,形狀類似於一根雪茄,因此得名。其度量可以寫成: $g = \frac{dx^2 + dy^2}{1 + x^2 + y^2}$

它滿足 Ricci Soliton 方程,且流形在 Ricci 流下保持不變,僅在形狀上發生自相似變化。

- 5. Bryant Soliton: A complete, non-compact gradient steady soliton in three dimensions.
- 6. Pseudo-Einstein soliton:在一些更一般的情況下,Perelman 在研究三維流形的幾何化時,發現了非平凡的 Ricci Soliton,例如 標準三維黎卡提空間(Ricci soliton metrics on homogeneous spaces),其中:
- Hamilton 的標準溫度球面解(Hamilton's standard shrinking soliton on S^3)
- Perelman 的 cigar soliton (雪茄孤立子)

Ricci solitons are a central topic in geometric analysis and have deep connections to physics, particularly in the study of general relativity and string theory.

§ Ricci soliton

A Ricci soliton is a Ricci flow $0 \le t < T \le \infty$ with the property that for each $t \in [0,T)$ there is a diffeomorphism $\varphi_t : M \to M$ and a constant $\sigma(t)$ such $g(t) = \sigma(t) \varphi_t^* g(0)...(1)$

 $\varphi_t: M \to M$ is a time-dependent family of diffeomorphism with $\varphi_0 = id$ and $\sigma(t)$ is a time-dependent scale factor with $\sigma(0) = 1$ °

That is to say \cdot in a Ricci soliton all the Riemannian manifold (M,g(t)) are isometric up to a scale factor that is allowed to vary with t \circ

The soliton is said to be shrinking if $\sigma'(t) < 0$ for all t \circ

(1) 兩邊微分後取 t=0

$$\frac{\partial}{\partial t}g(t) = \frac{d\sigma(t)}{dt}\varphi_t^*g(0) + \sigma(t)\frac{\partial}{\partial t}\varphi_t^*g(0)$$

$$-2Ric(g(0)) = \sigma'(0)g(0) + L_Vg(0) \cdots (2)$$
, where $V = \frac{d\varphi_t}{dt}$

A Ricci soliton structure is (M, g, X, λ)

$$Ric(g) + \frac{1}{2}L_X g = \frac{\lambda}{2}g \cdots$$
(3) 與(2)比較得 $\lambda = -\sigma'(0)$

Tracing (3) , we have $R + divX = \frac{n\lambda}{2}$, R is the saclar curvature \circ

$$divX = tr(\nabla X) = \sum_{i=1}^{n} \nabla_{i} X^{i}$$

As before, $g(t) = (1 - 2\lambda t)g_0$ is a solution of the Ricci flow, i.e. a Ricci soliton in Eistein manifolds.

If f is a function $\nabla f = df$, in local coordinates, $\nabla_i f := (df)_i = \frac{\partial f}{\partial x^i}$ and

$$\nabla^i f := (\nabla f)^i = g^{ij} \nabla_i f \circ$$

(3) simplifies to
$$Ric(g) + \nabla^2 f = \frac{\lambda}{2}g$$
 since $L_{\nabla f}g = 2\nabla^2 f$, here ∇^2 denote the

Hessian • These are so-called gradient Ricci solitons •

A shrinking soliton (M,g(t)) $0 \le t < T$ is said to be a gradient shrinking soliton if the vector field X is a gradient of a smooth function on M \circ

Proposition

(M,g(0)) is a complete Riemannian manifold , a smooth function $f:M\to R$, and a constant $\lambda>0$ such that $-Ric(g(0))=Hess(f)-\lambda g(0)$

Then there is T>0 and a gradient shrinking soliton (M,g(t)) defined for $0 \le t < T$

Since
$$L_{\nabla f}g(0) = 2Hess(f)$$
, $X = \nabla f$

[Remark]

Lie derivative of a form ω :

$$X \in \chi(M) \ , \ L_X\omega \coloneqq \lim_{t \to 0} \frac{1}{t} (\varphi_t^*\omega - \omega) = \frac{d}{dt} (\varphi_t^*\omega)\big|_{t=0} \ , \ \text{Where} \ \ \varphi_t \ \ \text{is the local flow of} \\ X \circ$$

The Lie derivative of the metric tensor g:

$$(L_{V}g)_{ij} = V^{k}g_{ij,k} + V^{k}_{,i}g_{kj} + V^{k}_{,j}g_{ik} \quad \text{Or} \quad (L_{X}g)_{\mu\nu} = X^{\rho}\partial_{\rho}g_{\mu\nu} + g_{\rho\nu}\partial_{\mu}X^{\rho} + g_{\rho\mu}\partial_{\nu}X^{\rho}$$

Note that , K is a Killing vector field $\iff L_K g = 0$

 (M, g, X, λ) is a Ricci soliton, then $(M, g, K + X, \lambda)$ is also a Ricci soliton \circ

Lemma

On a Riemannian manifold (M,g) , we have $(\mathbf{L}_{\mathbf{X}}g)_{ij} = \nabla_i X_j + \nabla_j X_i$

Where ∇ denote the Levi-Civita connection of the metric g \cdot for any vector field X \circ

Let ω be the 1-form due to the vector field X , $\omega(Y) = \langle X, Y \rangle$ then

$$L_X g(Y, Z) = \dots = (\nabla_Y \omega)(Z) + (\nabla_Z \omega)(Y)$$

Let $\sigma'(0)=2\lambda$ in the result of Lemma 1.7 to write (1) in coordinates as

$$-2R_{ii} = 2\lambda g_{ii} + \nabla_i V_i + \nabla_i V_i$$

As a special case we can consider the case that V is the gradient vector field of some

scalar function on M^n , i.e. $V_i = \nabla_u f \circ$ The equation then becomes

$$R_{ij} + \lambda g_{ij} + \nabla_i \nabla_j f = 0$$

Such solutions are known as gradient Ricci solitons •

A gradient Ricci soliton is called shrinking if $\lambda < 0$, static if $\lambda = 0$, and expanding if $\lambda > 0$

- § Special and explicitly defined Ricci solitons
- 1. The Gaussian solitons
- 2. Shrinking round spheres

The metrics of constant positive curvature on the sphere S^n are anturally shrinking gradient Ricci solitons, when paired with any constant potential function \circ

If g_{s^n} is the round metric of constant sectional curvature equal to one , the rescaled

metric $g = 2(n-1)g_{s^n}$ will satisfy $[Ric(g) + \nabla^2 f = \frac{\lambda}{2}g]$ with the canonical choice of constant $\lambda = 1$ °

We call $(S^n, g, \frac{n}{2})$ the shrinking round sphere \circ

For $S^n(n>1)$ of radius r , the metric is given $g=r^2\overline{g}$, where \overline{g} is the metric on the unit sphere \circ The sectional curvature are all $\frac{1}{r^2}$ \circ

Thus for any unit vector v , $Ric(v, v) = \frac{n-1}{r^2}$ by Lemma 1.11 °

Therefore
$$Ric = \frac{n-1}{r^2}g = (n-1)\overline{g}$$

So the Ricci flow equation becomes an ODE

$$\frac{\partial g}{\partial t} = -2Ric(g) \Rightarrow \frac{\partial}{\partial t} (r^2 \overline{g}) = -2(n-1)\overline{g} \Rightarrow \frac{dr^2}{dt} = -2(n-1)$$

$$r(t) = \sqrt{R_0^2 - 2(n-1)t} \quad \text{The manifold shrinks to a point as} \quad t \to \frac{R_0^2}{2(n-1)} \quad \text{The manifold shrinks}$$

Similarly, for hyperbolic n-space $H^n(n>1)$, the Ricci flow reduces to the ODE

$$\frac{d(r^2)}{dt} = 2(n-1)$$
 which has the solution $r(t) = \sqrt{R_0^2 + 2(n-1)t}$

So the solution expands out to infinity •

Reference [Curve shorting flow]

3. Hamilton cigar soliton

Let
$$M = R^2$$
, $g_0 = \rho^2 (dx^2 + dy^2)$

The Gauss curvature
$$K = -\frac{1}{\rho^2} \Delta \ln \rho$$
, $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

Then
$$Ric(g_0) = Kg_0$$
, if we set $\rho^2 = \frac{1}{1 + x^2 + y^2}$, we will find $K = \frac{2}{1 + x^2 + y^2}$

That is
$$Ric(g_0) = \frac{2}{1+x^2+y^2}g_0$$
, meanwhile, if we define $Y := -2(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y})$

Then
$$L_Y g_0 = -\frac{4}{1+x^2+y^2} g_0$$
, by (1.2.4) $-2Ric(g_0) = L_Y g_0 - 2\lambda g_0$

$$\lambda = 0$$
 , g_0 is a steady Ricci flow \circ

If write g_0 in terms of the geodesic distance from the origin , and polar angle to give

$$g_0 = ds^2 + \tanh^2 s d\theta^2$$

This show that the cigar opens at infinity like a cylinder, and therefore looks like a cigar!

The curvature in these coordinates is $K = \frac{2}{\cosh^2 s}$

Finally 'note that the cigar is also a gradient soliton since Y is radial ° Indeed we may take $f = -2 \ln \cosh s$ °

4. The Bryant soliton

Robert L. Bryant https://www.msri.org/people/staff/bryant/[3DXM_Surface Gallery]

[The Modeling of Degenerate Neck Pinch Singularities in Ricci Flow by

Bryant Solitons]

5. Einstein manifolds
$$Ric(g) = \frac{\lambda}{2}g$$
 of constant scalar curvature $\frac{n\lambda}{2}$

$$Ric(g) + \frac{1}{2}L_X g = \frac{\lambda}{2}g$$

If (M, g, X, λ) is Einstein soliton, then $L_X g = 0$

The vector field X is Killing •

- 6. Product solitons
- 7. Quotient solitons
- 8. Nongradient(無梯度) solitons

The complete Riemannian metric $g = \frac{2}{1+y^2}(dx^2 + dy^2)$, together with the complete

vector field $X = -x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y}$ generated by homotheties,comprises(包括) a

complete nongradient expanding Ricci soliton struture $(R^2,g,X,-1)$ on R^2 \circ

The scalar curvature of g is given by $R(x,y) = \frac{1-y^2}{1+y^2}$

$$R_{e^ug_E} = -e^{-u}\Delta u$$
 with $u = \ln(\frac{2}{1+v^2})$, and where Δ is the Euclidean Laplacian \circ

Reference [hyperbolic plane]
$$ds^2 = \frac{1}{y^2}(dx^2 + dy^2)$$

參考資料

- 1. [Ricci solitons with SO(3)-symmetries] by Robert L. Bryant
- 2. [Recent progress on <u>Ricci solitons</u>] by Huai-Dong Cao(曹懷東)
- 3. [Geometry of shrinking <u>Ricci solitons</u>] by Huai-Dong Cao(曹懷東)