§ 01 Preface

The Ricci flow was introduced by Richard Hamilton 1982。[ResearchGate] [Ricci flow 張樹城]

§ 02 Definittion

We have a Riemannian manifold M with the metric g_0 , the Ricci flow is a PDE that

evolves the metric tensor :
$$\frac{\partial}{\partial t} g(t) = -2Ric(g(t))$$
, $g(0) = g_0$

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics g(t), $(M, g(t_0))$ is called the initial condition (or initial metric) \circ

We hope that the metric will evolve towards one of the Thurston eight fundamental geometric structure \circ

In **harmonic coordinates** about p , that is to say $\Delta x^i = 0$, we have

$$R_{ij} = Ric(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) = -\frac{1}{2}\Delta g_{ij} + Q_{ij}(g^{-1}, \partial g)$$
 where Q_{ij} is a quadratic form in g^{-1} and ∂g

So , the Ricci flow equation $\frac{\partial g}{\partial t} = -2Ric(g) = \Delta g + 2Q_{ij}(g^{-1}, \partial g)$ is a heat equation for the Riemannian metric \circ (heat equation $u_t = k\Delta u$)

§ 03 Some exact solutions to the Ricci flow

(1) Einstein manifolds

Let g_0 be an Einstein metric : $Ric(g_0) = \lambda g_0$, where λ is a constant \circ Then for any constant c>0, setting $g = cg_0$

$$Ric(g) = Ric(cg_0) = Ric(g_0) = \lambda g_0 = \frac{\lambda}{c}g$$

Consider $g(t) = u(t)g_0$ is the solution of the Ricci flow, then

$$\frac{\partial g}{\partial t} = u'(t)g_0 = -2Ric(u(t)g_0) = -2Ric(g_0) = -2\lambda g_0$$

 $\therefore u'(t) = -2\lambda, u(t) = 1 - 2\lambda t$, thus $g(t) = (1 - 2\lambda t)g_0$ is a solution of the Ricci flow \circ

The case $\lambda > 0, \lambda = 0, \lambda < 0$ correspond to shrinking , steady and expanding solutions \circ

Notice that in the shrinking case the solution exists for $t \in [0, \frac{1}{2\lambda})$ and goes singular

at
$$t = \frac{1}{2\lambda}$$
 °

- (2) The standard metric on each of S^n, \mathbb{R}^n, H^n is Einstein \circ
- (3) $\mathbb{C}P^n$ equipped with the Fubini-Study metric, which is induced from the standard metric of S^{2n+1} under the Hopf fibration with the fibers of great circles, is Einstein.
- (4) Let h_0 be the round metric on S^2 with constant Gaussian curvature $\frac{1}{2}$

Set $h(t) = (1-t)h_0$, then the flow $(S^2, h(t)), -\infty < t < 1$ is a Ricci flow \circ

We also have the product of this flow with the trivial flow on the line $(S^2 \times R, h(t) \times ds^2), -\infty < t < 1$ • This is called the standard shrinking round cylinder •

The standard shrinking round cylinder is a model for evolving ε – necks \circ Definition

Let (M, g(t)) be a Ricci flow \circ An evolving ε -neck centered at (x, t_0) and defined for rescaled time t_1 is an ε -neck

 $\varphi: S^2 \times (-\varepsilon^{-1}, \varepsilon^{-1}) \xrightarrow{\cong} N \subset (M, g(t))$ centered at (x, t_0) with the property that pull-back

via φ of the family of metric $R(x,t_0)g(t')|_{N}$, $-t_1 < t' \le 0$

A strong ε -neck centered at (x,t_0) in a Ricci flow is an evolving ε -neck centered at (x,t_0) and defined for rescaled time 1 \circ As left \circ

FIGURE 1. Strong ϵ -neck of scale 1.

§ 04

單位 3 維球 的 metric, $g = ds^2 = d\psi^2 + \sin^2 \psi (d\theta^2 + \sin^2 \theta d\phi^2)$

半徑 r 的 3 維球, $g = ds^2 = r^2 d\psi^2 + r^2 \sin^2 \psi (d\theta^2 + \sin^2 \theta d\phi^2)$

此處半徑是時間的函數, $g = r^2 g$

n維球的里奇張量 Ric(g)=(n-1)g, 因此 Ricci flow 方程變成常微分方程

$$\frac{\partial g}{\partial t} = -2Ric(g) \Rightarrow \frac{\partial}{\partial t}(r^2\overline{g}) = -2(n-1)\overline{g} \Rightarrow \frac{dr^2}{dt} = -2(n-1)$$

$$r^2 = R_0^2 - 2(n-1)t$$

$$r(t) = \sqrt{{R_0}^2 - 2(n-1)t}$$
 ,時間 $t \to \frac{{R_0}^2}{2(n-1)}$,此球縮為一點(稱為奇點 singularity) 。

Similarly, for hyperbolic n-space $H^n(n>1)$, the Ricci flow reduces to the ODE

$$\frac{d(r^2)}{dt} = 2(n-1)$$
 which has the solution $r(t) = \sqrt{R_0^2 + 2(n-1)t}$

So the solution expands out to infinity •

§ 05 Singularities in the Ricci flow

§ 06 Short time existence and uniquness of the Ricci flow

§ 07 Ricci solitons

§ 08

The Laplacian:

- 1. $\Delta u = div(grad(u))$
- 2. Hessian matrix

$$\operatorname{Hess}(u) = \begin{bmatrix} \frac{\partial^2}{\partial x^2} u & \frac{\partial}{\partial x} \frac{\partial}{\partial y} u & \frac{\partial}{\partial x} \frac{\partial}{\partial z} u \\ \frac{\partial}{\partial y} \frac{\partial}{\partial x} u & \frac{\partial^2}{\partial y^2} u & \frac{\partial}{\partial y} \frac{\partial}{\partial z} u \\ \frac{\partial}{\partial z} \frac{\partial}{\partial x} u & \frac{\partial}{\partial z} \frac{\partial}{\partial u} u & \frac{\partial^2}{\partial z^2} u \end{bmatrix}$$

is called the Hessian matrix of u, then $\Delta u = trHess(u)$

the Ricci curvature is the trace of the Riemann curvature tensor •

- 1. The Ricci flow on the 2-sphere Bennet Chow
- 2. An Illustrated introduction to the Ricci flow <u>Gabriel Khan</u> [部落格] 內有本書 第三版
- 3. 4D model of the Ricci flow by <u>Dryuma Valery</u> [<u>ResearchGate</u>]
- 4. Ricci flow gravity by Wolfgang Graf
- 5. General Relativity and the Ricci flow by Mohammed A. Alzain
- 6. [Curvature] [Mechanics] [Richard Schoen]