$$
\S \ \frac{\partial}{\partial t} x(p,t) = \overrightarrow{H}(p,t)
$$

A geometric diffusion equation $\frac{\partial x}{\partial t} = \Delta_{M_t}$ $\frac{x}{-} = \Delta_{1} x$ *t* $\frac{\partial x}{\partial x} = \Delta$ $\frac{\partial x}{\partial t} = \Delta_{M_x} x$ for the coordinates x of the corresponding family of surfaces $\{M_t\}_{t \in [0,T)}$ Where ∇_M is the Laplace-Beltrami operator.

Since $\Delta_{M_t} x = H$ where *H* represents the mean curvature vector, we have

$$
\frac{\partial}{\partial t}x(p,t) = \overrightarrow{H}(p,t)
$$

MCF is the negative gradient flow for area \circ

It is a nonlinear PDE for the evolving the hypersurface that is similar to the ordinary heat equation \cdot Model things such as cell, grain, and bubble growth \cdot

Translating solution known as the Grim Reaper。

Suppose that M is a closed hypersurface in R^{n+1} and M_t is a variation of M \circ That is,

 M_t is a one-parameter family of hypersurface with $M_0 = M$

If we think of **volume** as a function o the space of hypersurfaces, then the first variation formula gives the derivative of volume under the variation

$$
\frac{d}{dt}Vol(M_t) = \int_{M_t} <\partial_t x, H_n>
$$

Here x is the position vector, n the unit normal, and H themean curvature scalar given

by
$$
H = div_M(n) = \sum_{i=1}^n \langle \nabla_{e_i} n, e_i \rangle
$$
 where e_i is an orthonormal frame for M

Equivalently, H is the sum of the principal curvatures of H \circ With this normalization, H is n/R on the round n-sphere of radius $R \circ$

It follows from the first variation formula that the gradient of volume is

 $\nabla Vol = Hn$ and the most efficient way to reduce the volume is to choose the variation so

that
$$
\frac{\partial}{\partial t} x = -\nabla Vol = -Hn
$$

This negative gradient flow for volume is called MCF \circ

Under the MCF, a hypersurface locally moves in the direction where the volume element decreases the fastest。

thus
$$
\cdot
$$
 if M_t flows by MCF \cdot then $\frac{d}{dt}Vol(M_t) = -\langle \nabla Vol, \nabla Vol \rangle = -\int_{M_t} H^2$ The flow

constracts a closed hypersurface, eventually leading to its extinction in finite time.

Theorem

Given a compact \cdot immersed hypersurface M in R^{n+1} \cdot there exists a unique mean curvature flow defined on the interval [0,T] with initial surface M。

Any closed smooth 4-dimensional manifold homotopy equivalent to $S⁴$ can be smoothly emedded as a hypersurface。