1.1 Curve shortening flow(CSF)

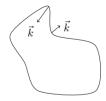
Given a smooth immersion $X_0: R/Z \to R^2$

We can evolve it by taking $X: R/Z \times [0,T) \rightarrow R^2$ such that

$$\begin{cases} \frac{\partial X}{\partial t}(u,t) = \kappa N(u,t) & \text{...This is the CSF equation } \\ X(u,0) = X_0(u) \end{cases}$$

Here κ is the curvature of our curve , N is the inward-pointing unit normal vector ,

defined by
$$-\kappa N = \frac{\partial^2 X}{\partial s^2}$$



The curvature vector points in a direction which serves to smooth the curve out •

The CSF equation is
$$\frac{\partial X}{\partial t} = \frac{\partial^2 X}{\partial s^2}$$

Where s is the arc-length parameter °

An embedded curve $\Gamma \subset \mathbb{R}^2$ and its curvature vector $\vec{k}.$

Because s changes with time , this is not the ordinary heat equation , but a non-linear heat equation • However , it still has the nice smoothing properties •

If , for example , Γ is initially C^2 , then for t>0 small , Γ_t becomes real analytic \circ

Example: The shrinking circle

If our initial curve X_0 is a circle of radius r_0 centred at the origin, then the solution will take the form $X(u,t) = r(t)(\cos u, \sin u)$.

We have $N = \frac{X}{r}$, $\kappa = \frac{1}{r}$, so the curve-shortening equation becomes $\frac{dr}{dt} = -\frac{1}{r}$ which

has the solution $X(u,t) = \sqrt{r_0^2 - 2t} (\cos u, \sin u)$

So the circle shrinks to a point at a finite tme $t = \frac{r_0^2}{2}$

根據迴避原理(avoidance principle),包在圓內的曲線會在圓消失之前消失。

§ The acoidance principle

If X,Y are solution of the CSF on [0,T), and $X(u,0) \neq Y(v,0)$ for all u,v, then $X(u,t) \neq Y(v,t)$ for all u,v, for $t \in [0,T)$

That is , if the curves do not intersect initally , they will not intersect at any later time \circ

Theorem :

If Γ_t is an embedded curve flowing by curve shortening flow, A(t) is the area enclosed by Γ_t , then $A'(t) = -2\pi$ 假設 Γ_t 圍住的區域為 Ω , 則 $A(t) = \iint_{\Omega} dA$

The area swept by the segment ds in time dt is $\approx v_n dt ds$, where $v_n = v \cdot n$, here n is the outward-pointing unit normal vector, $v = \frac{\partial X}{\partial t} = \kappa N = -\kappa n$

Then
$$v_n = v \cdot n = \kappa N \cdot n = -\kappa$$

 $dA = \int_{\Gamma_t} v_n ds dt \Rightarrow \frac{dA}{dt} = \int_{\Gamma_t} v_n ds = -\int_{\Gamma_t} \kappa ds = -2\pi$
 $\int_C d\theta = \int_C \frac{d\theta}{ds} ds = \int_C \kappa ds = 2\pi$ 這是切線轉角定理。

1. CSF(或稱 curvature flow)
$$\frac{\partial X}{\partial t} = \kappa N$$
 N 朝內

- 2. A circle $\xrightarrow{t=r^2/2}$ collapse to a point
- 3. Collision free
- 4. $A'(t) = -2\pi$
- Gage-Hamilton theorem 1986
 Convex curves shrink to round points •
- 6. Grayson theorem 1989 Under the CSF , embedded curves become convex and thus (by G-H theorem) eventually shrink to round points °

Ø