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Abstract

This report is concerned with a description of the Korteweg-de Vries equation, or KdV
equation for short, focusing on special properties of its solutions. Among the latter we have the
so called "solitons" which shall be described briefly before giving some historical background
on their first observation in 1834 by J.S. Russell. We derive the Korteweg-de Vries equation
starting from fluid dynamics and then analyse its additional properties. More precisely, we
show that the Korteweg-de Vries equation can be obtained from a 1+1 dimensional field
theory from which we find some conserved quantities using the Noether’s theorem. Next,
the Korteweg-de Vries equation is solved, firstly following the same approach of Korteweg
and de Vries in 1895; and secondly by using the inverse scattering transform leading to a
larger family of solutions. To conclude, the symmetries of the Korteweg-de Vries equation are
analysed and their relation to previously obtained properties of the solutions are discussed.
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1 Introduction and Historical Aspects
The concept of solitons is intimately related to the KdV equation. Although a precise mathe-
matical definition of a soliton is hard to establish, we will simply associate solitons to dynamical
structures which are solutions to some nonlinear (differential) equations characterized by the
following properties [1],[2]:

(i) Permanent form, i.e. the shape does not change

(ii) Localized, such that the soliton either decays or approaches a constant at infinity

(iii) Interact strongly with other solitons and retain its identity after the collision.

Also, we can distinguish between two types of solitons [3]:

• Topological solitons: The necessary condition is that there should exist degenerate vacuum
states such that the boundary condition at infinity for a soliton is topologically different
from that of a physical vacuum state.

• Non-topological solitons: The boundary condition at infinity for a non-topological soliton
is the same as that for the vacuum state. Thus, there is no need of degenerate vacuum
states. The necessary condition for the existence of non-topological solitons is the existence
of an additional conservation law.

The very first observation of one single soliton (usually referred to as solitary wave) was made in
1834 by the Scottish engineer John Scott Russell while working at the Union Canal connecting
Edinburgh with Glasgow. He was so impressed by the extraordinary constant shape and speed
of the wave, that he followed its propagation for a few miles through the canal [4], [5].

Figure 1. Illustrates a recreated solitary wave in the Union Canal (1995) [6]-slightly modified.
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He described his astonishment with the following words [5]:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped—not so the mass of water in the channel which it had
put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued its course along the
channel apparently without change of form or diminution of speed. I followed it on horseback,
and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such,
in the month of August 1834, was my first chance interview with that singular and beautiful
phenomenon which I have called the Wave of Translation”.

With this enthusiasm he started to do some research on these solitary waves during roughly
the next decade. His studies were met by scepticism from the scientific community at that
time as people were struggling to describe his observations. The reason for that was due to
the fact that his observations were a consequence of non-linear effects which were thought to
be of secondary importance back then. Despite the critical attitude of his peers he pursued his
research and he deicided to stop his experimentations only when two famous mathematicians,
namely G.B. Airy and G.G. Stokes, pointed out that his observations were in contradiction with
their theories of shallow water waves1. It was only in 1877 when the French scientist Joseph
Valentine de Boussinesq published a paper including some non-linear terms in his wave equation
whose solution exhibited properties similar to the solitary wave originally observed by Russell.
However, his paper did not draw much attention in England. Five years later Rayleigh confirmed
Russell’s observations independently from Boussinesq by obtaining (also) a solitary wave profile.
In 1895 Diederik Johannes Korteweg and Gustav de Vries pursued the work done by Rayleigh
by including the effect of surface tension leading to the now famous Koerteweg-de Vries (KdV)
equation [4], [5], [9]:
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∂τ
+ 3
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√
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2η
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3αη+
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∂2η

∂ξ2

)
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In Eq. (1.1) η is the surface elevation (of the wave) above the equilibrium level h, α a constant
related to the uniform motion of the liquid (with unit of length), g is the gravitational accel-
eration and σ ..= 1

3h
3 − Th

%g with T denoting the surface tension and % the (fluid) density. A
physical example where solitons can be observed (in shallow water) is for instance the tidal bore
called "Mascaret" in France. A tidal bore is a wave (or a series of waves) generated by the tide
that propagates upstream (of a river). The elevation of the wave and its velocity can reach 5m
and 100 km/h respectively. Another example of solitons occurring in nature are tsunamis. Even
though oceans are very deep (approximately h = 4 km on average) the shallow water theory,
more precisely the KdV equation, may still be applied since a tsunami wave can reach a (spacial)
extent roughly of 100 km. The propagation speed is calculated using c0 =

√
gh ≈ 700km/h

which is very fast. As soon as they approach the coast the depth and the propagation velocity
(of the wave) decreases, hence one might intuitively argue that due to the conservation of energy
a large wave must rise. The permanent profile of a soliton solution of the KdV equation results
from the equilibrium between two effects: non-linearity (proportional to ηξη) and dispersion
(proportional to ηξξξ). Non-linearity tends to comprise the wave whereas dispersion spreads it
out. If we return to the tsunami example, we can treat the decreasing depth as a perturbation
in the sense that the system cannot reach an equilibrium state. Since the dispersive term is pro-
portional to h3, it decreases whereas the non-linear term, proportional to 1√

h
, increases, leading

to a large wave [4], [5].
1The depth of the water is roughly half of the wavelength (or less) [5].
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2 Derivation of the KdV Equation

We shall start this section by introducing some terminology. Let the vector u(x, t) =
(
u(x, y, t),

v(x, y, t)
)T

denote the (two-dimensional) flow velocity at an arbitrary point x and time t. If
we assume an incompressible and irrotational flow, mathematically speaking div u = 0 and
rot u = 0, we may rewrite the components u and v of the velocity using the velocity potential
φ and the stream function ϕ:

u =
∂φ

∂x
=
∂ϕ

∂y
and v =

∂φ

∂y
= −∂ϕ

∂x

which are related to the flow velocity u by grad φ = u respectively u = rot(ϕẑ) [7].

In order to demonstrate how Korteweg and de Vries derived their equation, we will start from
Euler’s equation of fluid dynamics and formulate two physical boundary conditions: the free
surface condition and the kinematic boundary condition. Secondly, we will perform a Taylor
expansion of the velocity components which will be subsequently inserted into the boundary
conditions leading to the KdV equation.

Surface Condition
Euler’s equation for an inviscid fluid reads

∂u

∂t
+
(
u · ∇

)
u = −∇

(
p
% + χ

)
(2.1)

where % is the density of the fluid, p the pressure and g = grad χ. We may rewrite Eq. (2.1)
using the identity (u · ∇)u = (rot u) ∧u+∇

(
1
2u

2
)
and the velocity potential φ:

∂φ

∂t
+ 1

2u
2 + χ = C(t) +

p0 − p
%

(2.2)

where we integrated once, thus obtaining an integration constant p0 which we identify with the
atmospheric pressure, C(t) is an arbitrary function which only depends on time. As already
pointed out Korteweg and de Vries included the effect of surface tension2 which causes a net
upward force per unit area of surface of T d2η

dx2 ∆x. This upward force has to correspond to the
difference of pressures, in other words p0 − p = T d2η

dx2 . Therefore we rewrite Eq. (2.2):

∂φ

∂t
+ 1

2u
2 + gη−C(t) = T

%

∂2η

∂x2 if y = η(x, t). (2.3)

This is known as the free surface condition (with surface tension) [7], [8].

2 Here we justify the expression for the ten-
sion. From the picture on the right we de-
duce ∆T = T sin(θ+ ∆θ)−T sin(θ) ≈ T∆θ.
On the other hand, differentiate tan(θ) =
dy
dx leads to dθ

dx = d2y
dx2 ⇔ ∆θ = d2y

dx2 ∆x
where we assumed small angles. As a re-
sult, we obtain

∆T = T · d
2y
dx2 ∆x
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Kinematic Condition
Let η(x, t) describe the shape of a (one-dimensional) wave3. We define a function F (x, y, t) ..=
η(x, t)− y which vanishes as long as a particle is on the surface. Taking the (total) derivative
with respect to time we obtain

dF

dt
=
∂F

∂t
+ (u · ∇)F =

∂η

∂t
+ u

∂η

∂x
− v = 0 if y = η(x, t). (2.4)

Eq. (2.4) is referred to as the kinematic boundary condition [7].

The Expansion
Following [9] Korteweg and de Vries expanded the velocity components using Taylor series under
the assumption of shallow water h� 1. By doing so they obtained

u(x, t) = f(x, t)− y2

2!
f ′′(x, t) + y4

4!
f (4) − ... and v(x, t) = −yf ′(x, t) + y3

3!
f (3)(x, t)− ...

(2.5)

under the assumption of shallow water h � 1. In addition, they made the ansatz f(x, t) =
q0 − g

q0
(η(x, t) + α+ γ(x, t)) where q0 is an unknown (constant) velocity, α is a small constant

describing the uniform motion of the liquid and γ is small compared to η. By inserting Eq. (2.5)
into the kinematic condition (2.4) and into the derivative with respect to time of the free surface
condition (2.3), we obtain two equations (for h and γ). Combining these we may eliminate
γ(x, t) and eventually obtain the Korteweg de Vries equation as it was originally presented in
the dissertation of de Vries:

∂η

∂t
= 3

2
g
q0

∂

∂x

(
1
2η

2 + 2
3αη+

1
3σ
∂2η

∂x2

)
with σ ..= 1

3h
3 − Th

%g . (2.6)

Equation (2.6) can be rewritten in a moving frame ξ ..= x− (
√
gh−

√
g
hα)t with q0 = −

√
gh

and t = τ . In this way we are left with

∂η

∂τ
+ 3

2

√
g
h

∂

∂ξ

(
1
2η

2 + 2
3αη+

1
3σ
∂2η

∂ξ2

)
= 0 (2.7)

where we neglected the added (constant) velocity [9]. Furthermore, Eq. (2.7) becomes dimen-
sionless by introducing the variables t ..= 1

2

√
g
hτ , x ..= σ−1/3ξ, u ..= σ−1/3( 1

2η +
1
3α), and Eq.

(2.7) simplifies to
ut(x, t) + 6u(x, t)ux(x, t) + uxxx(x, t) = 0. (2.8)

The subscripts in Eq. (2.8) denote partial differentiations. This (simplified) form is how the
KdV equation usually appears in the literature. There are at least two several reasons one
would like to work with a dimensionless equation: on the one hand, it can be used to describe a
wider range of phenomena. On the other hand, it allows more control of the magnitude of the
parameters.

3For an illustration see Fig. 2 where η(x, t) = u(x, t).
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3 Additional Properties of the KdV Equation
The KdV equation also arises as the Euler-Lagrange equation from a Lagrangian density L, in
other words it arises from a variational principle. Since the KdV equation is a third order partial
differential equation, this suggests that an associated Lagrangian density should also depend on
∂ν∂µψ(r, t) where the indices take the values 0, ..., 3. We shall be restricting our discussion
to Lagrangian densities which only depend on the field ψ(xµ) on 3+1 space-time coordinates
xµ = (x0 = t,x1 = x,x2 = y,x3 = z). In short, we consider L = L(ψ(x), ∂µψ(x), ∂ν∂µψ(x))
which does not explicitly depend on x. The equations of motion are obtained from Hamilton’s
principle of least action δS = δ

� (2)
(1) L dt = 0 where δ describes the variation, i.e. the variation

of the action vanishes along the path of the motion4. Consider the vanishing of the variation of
the action:

δS =

�
d4x

[
∂L
∂ψ

δψ+
∂L

∂(∂µψ)
δ(∂µψ) +

∂L
∂(∂ν∂µψ)

δ(∂ν∂µψ)

]
(3.1)

=

�
d4x

[
∂L
∂ψ

δψ− ∂µ
(

∂L
∂(∂µψ)

)
δψ+ ∂ν∂µ

(
∂L

∂(∂ν∂µψ)

)
δψ

]
= 0, (3.2)

where we used the divergence theorem (under the assumption that the field ψ vanishes at
infinity) and the fact that the field configuration is given at the times t(1) and t(2) leading to
a vanishing surface current. Hence, we obtain the field equations as the (generalised) Euler-
Lagrange equation:

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
+ ∂ν∂µ

(
∂L

∂(∂ν∂µψ)

)
= 0. (3.3)

This equation is valid as long as Hamilton’s principle of least action holds [10],[11]. As an
illustration we consider the Lagrangian density for a field ψ(x0,x1):

L = 1
2

(
(ψ11)

2 −ψ1ψ0 − 2(ψ1)
3
)
. (3.4)

In Eq. (3.4) we denoted ψ1 ≡ ∂ψ
∂x respectively ψ0 ≡ ∂ψ

∂t . Additionally we have assumed that
ψ does not depend on x2 and x3. By inserting Eq. (3.4) into Eq. (3.3) we obtain the KdV
equation (2.8) if we identify u = ψ1 [13]. It is very useful being able to obtain the KdV equation
from a Lagrangian density because this opens the door for using the Noether theorem. The
latter leads to the description of conservation laws. However, we are only capable of recognizing
very few conserved quantities and it turns out that a system described by the KdV equation has
infinitely many conserved quantities [14].

Theorem 3.1 (Noether). Each (continuous) symmetry transformation which leaves the action
invariant corresponds to a conservation law for a specific physical quantity. In particular, the
infinitesimal (symmetry) transformation ψ(x) 7→ ψ′(x) = ψ(x) + α∆ψ leads to the conserved
current

∂µj
µ(x) = 0

jµ(x) ..=
∂L

∂(∂µψ)
∆ψ+

∂L
∂(∂ν∂µψ)

∂ν(∆ψ)− ∂ν
∂L

∂(∂ν∂µψ)
(∆ψ)−J µ.

4We will not explicitly mention the boundary condition(s) of the field (at ∞), for simplicity we assume that
we may integrate over the whole (3D-)space and that the field decreases sufficiently rapidly at infinity, so that we
can perform a partial integration without obtaining boundary terms [10].
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Proof. The (infinitesimal) transformation ψ(x) 7→ ψ′(x) = ψ(x) + α∆ψ maps solutions of the
Euler-Lagrange equations to solutions if and only if the action remains invariant under this
transformation. Thus, it is sufficient to require that the action only changes by a surface term,
since its contribution to the Euler-Lagrange equations would vanish. As a result, in order that
ψ(x) 7→ ψ′(x) = ψ(x) + α∆ψ defines a symmetry, the Lagrangian density must transform
according to

L = L(ψ, ∂µψ, ∂ν∂µψ) 7→ L+ α∂µJ µ.

On the other hand we compute the variation of L directly:

α∆L

=
∂L
∂ψ

∆ψ+
∂L

∂(∂µψ)
∂µ(∆ψ) +

∂L
∂(∂ν∂µψ)

∂ν∂µ(∆ψ)

= α
[
∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
+ ∂ν∂µ

(
∂L

∂(∂ν∂µψ)

)]
∆ψ + α∂µ

[
∂L

∂(∂µψ)
∆ψ +

∂L
∂(∂ν∂µψ)

∂ν(∆ψ)− ∂ν
∂L

∂(∂ν∂µψ)
(∆ψ)

]
Using the Euler-Lagrange equation the first term vanishes while the second term equals α∂µJ µ

which eventually leads to Noether’s theorem [10], [11]. The attentive reader may have noticed
that we have only partially proved the statements of theorem 3.1 which will be required for the
subsequent discussion of the KdV equation. In order to complete the proof we would have to
consider a transformation of space-time xµ 7→ x′µ leading to ψ′(x′) which is a lot more difficult.
A possible way to proceed would be to generalise the approach followed by [12] for a Lagrangian
density (also) depending on the second derivative.

We now proceed by applying Noether’s theorem to the infinitesimal translation xµ 7→ xµ − εµ.
This leads to the transformation of the field ψ(x) 7→ ψ(x+ ε) = ψ(x) + εµ∂µψ(x). Thus, we
identify α∆ψ = εν∂νψ(x). The Lagrangian density transforms according to:

L(x) 7→ L(x) + εν∂νL(x) = L(x) + εν∂µ(δ
µ
νL(x)). (3.5)

Obviously J µ does not vanish and we get the conserved quantity

Tµν
..=

∂L
∂(∂µψ)

∂νψ− δµνL+
∂L

∂(∂ν∂µψ)
∂ν(∂νψ)− ∂ν

∂L
∂(∂ν∂µψ)

(∂νψ), (3.6)

which we identify as the energy-momentum tensor familiar from electrodynamics. The tensor
Tµν completely characterises the energy and the momentum of the field ψ [10], [11]. For in-
stance, if we consider the Lagrangian density L = 1

2

(
(ψ11)2−ψ1ψ0− 2(ψ1)3

)
and calculate the

components T 0
0 and T 0

1 we obtain:

T 0
0 = (ψ1)

3 − 1
2 (ψ11)

2 ≡ H and T 0
1 = −1

2 (ψ1)
2.

They are respectively the energy density associated with the Hamiltonian(-density) and the
momentum density, i.e. the momentum is conserved5. We may also shift the (wave-)field ψ by a
constant since the Lagrangian density (3.4) is invariant under this (symmetry) transformation:

5The "-" sign comes from

Tµν = gενTµε

T 00 = g00T 0
0 = T 0

0

T 01 = g11T 0
1 = −T 0

1
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ψ(x) 7→ ψ′(x) = ψ(x) + α · const. ; hence, J ≡ 0 is trivial and ∆ψ = const. We compute the
first component of the conserved current

j0 = 1
2ϕ1 · const.,

which is identified as the conserved mass-density. In other words the mass is conserved. To
summarize, by reformulating the KdV equation as a variational principle and using the (pow-
erful) Noether theorem in order to obtain conserved quantities, we demonstrated that the mass
is conserved due to a translation of ϕ. The fact that the mass is conserved might not seem sur-
prising since we imposed its conservation in the derivation of the KdV equation. The invariance
of Eq. (3.4) with respect to space and time translation respectively imply that momentum and
energy are conserved.

As previously mentioned, the KdV equation has an infinite amount of conserved quantities. But
how do we obtain these, despite the ones we have already seen? In order to show this claim, it
is necessary to define (mathematically) what we interpret as a conserved quantity [14].

Definition 3.1 (Conservation law). For the partial differential equation

∆
(
x, t,u(x, t)

)
= 0 (3.7)

where t ∈ R, x ∈ IR are the temporal and spatial variables and u(x, t) ∈ IR the dependent
variable, a conservation law is an equation of the form

DtTi +DxXi = 0 (3.8)

which is satisfied for all solutions of the Eq. (3.7), where Ti(x, t), the conserved density, and
Xi(x, t), the associated flux, are, in general, functions of x, t,u and the partial derivatives of u;
Dt and Dx denote the total derivative with respect to the subscript variable.

Under the condition lim|x|→∞Xi = 0 sufficiently fast we conclude that an integration of Eq.
(3.8) over (the whole) space leads to d

dt
�∞
−∞ Ti(x, t) dx = 0. After performing the integration

we get: � ∞
−∞

Ti(x, t) dx = ci

where ci (which is constant) is the conserved quantity. In order to apply the previously outlined
approach to find conservation laws associated to the KdV equation, it is useful to rewrite u =
w− εwx− ε2w2 where w is a function (to be determined) and ε a parameter, which is occasionally
referred to as the Gardner transformation. By inserting the latter expression for u into the KdV
equation ut+ 6uux+ uxxx = (1− ε∂x− 2ε2w)(wt+ 6(w− ε2w)wx+wxxx), we find that u solves
the KdV equation if and only if w is a solution of

(wt + 6(w− ε2w)wx +wxxx) =
∂

∂t
(w) +

∂

∂x
(wxx + 3w2 − 2ε2w3) = 0. (3.9)

Eq. (3.9) was rewritten in the same form of Eq. (3.8) and consequently the quantity
�∞
−∞w dx

is conserved. Since the KdV equation does not depend on the parameter ε, neither will its
solution u(x, t). Moreover w → u as ε → 0. Hence, we represent w as a (formal) power series
w(x, t; ε) =

∑∞
n=0 ε

nwn(x, t) where we would like to emphasize that the conserved quantities
are

�∞
−∞wn(x, t) dx ∀n. By substituting the latter series expansion in u = w− εwx − ε2w2 and
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by equating recursively powers of ε we obtain:

w0 = u, (3.10)
w1 = w0,x = ux, (3.11)
w2 = w1,x +w2

0 = uxx + u2, (3.12)
w3 = w2,x + 2w0w1 = uxxx + 4uux, (3.13)
w4 = w3,x + 2w0w2 +w2

1 = uxxxx + 6uux + 5u5
x + 2u3, (3.14)

and so on. The coefficients wn yields an infinite number of conserved densities. However, in order
to obtain the conservation laws of the KdV equation it is necessary to insert Eq. (3.10)-(3.14)
into Eq (3.9) and equate the corresponding powers of ε. It turns out that only even power of
ε give independent conservation laws while odd powers provide no additional information since
these are the derivative of the previous even power. Following the explained procedure we obtain
the first three conservation laws after some elementary transformations:

(u)t = −∂x(3u2 + uxx), (3.15)
(u2)t = −∂x(4u3 + 2uux − u2

x), (3.16)

(u3 − 1
2u

2
x)t = −∂x

(
9
2u

4 + 3u2uxx − 6uu2
x − uxuxxx + 1

2u
2
xx

)
. (3.17)

As a result we obtain the same conserved quantities as before using Noether’s theorem [1], [14].
The reason we previously obtained less conservation laws might be due to the fact that we only
considered geometrical transformations.
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4 Solving the KdV Equation

In this section we shall examine solutions of the KdV equation6 and the methods one can use
for obtaining them. We first start by looking for travelling wave solutions. For that we make
the ansatz u(x, t) = f(x− ct) for some c ∈ R. By inserting this into the KdV equation yields an
ordinary differential equation for f , namely −cf − 6ff ′+ f ′′′ = 0, which can be easily integrated
yielding −cf − 3f2 + f ′′ = a where a is an integration constant. We then multiply the latter
equation by f ′, integrate it again, thus obtaining an additional integration constant b. By
rescaling the (integration) constants, we find:

(f ′)2 = 2f3 + cf2 + a′f + b′ ≡ F (f). (4.1)

We have thus obtained a first order non-linear (ordinary) differential equation which needs to
be solved. Obviously the roots of F will play an important role in our analysis and we can
distinguish the following cases:

1. F has three distinct (real) roots.

2. F has two (real) roots, one has order two.

3. F has one simple root (and two imaginary ones).

4. F has one root of order three.

The cases three and four will not be treated here. We will start with the second case and assume
that the double root β is larger than the simple root α. It can be shown that if a solution f
has initial condition α < f(x0) < β, then α < f(x) < β holds ∀x and one can expect bounded
solutions. Hence we write F (f) = 2(f − β)2(f − α). By inserting the latter expression for F
in Eq. (4.1) and using some algebraic manipulations we are left with

� f

α

dξ

(ξ − β)
√
ξ − α

= ±
√

2x+C (4.2)

where C is an integration constant. In order to perform the integration we substitute ξ ..= α+
(β −α) sin2(ν). The integral becomes −2√

β−α

� φ
0

1
cos(ν)dν. The quantity φ is defined by sin(φ) =√

f−α
β−α . Using these substitutions one can perform the required integration by elementary means,

yielding
−2√
β−α

log | tan
(
φ
2 + π

4

)
|= ±

√
2x+C.

By using the addition formula tan(α+ β) = tanα+tanβ
1−tanα tanβ , we obtain

1+tan
(
φ
2

)
1−tan

(
φ
2

) = ey and conse-

quently tan
(
φ
2

)
= tanh

(y
2
)
with y ..= ±

√
β−α

2 (x−C). It is now possible to determine f as a
function of x by using the identities cosφ = 1/(1+ tan2 φ), 1

2 (1+ tanh2( y2 )) tanh(y) = tanh
(y

2
)

6In this section we shall be referring to ut(x, t)− 6u(x, t)ux(x, t) + uxxx(x, t) = 0 as the KdV equation where
the substitution u(x, t) 7→ −u(x, t) was performed.
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and that cosh is an even function. In this way we find

f(x) = α+ (β − α) sin2(φ) = α+ 4(β − α) tan2(φ2 ) cos4(φ2 )

= α+ 4(β − α)
tanh2( y2 )

(1 + tanh2( y2 ))
2 = β +

α− β
cosh2(y)

= β +
α− β

cosh2
(√

β−α
2 (x−C)

) .

We then impose the boundary condition lim|x|→∞ f(x) = 0 which can be achieved only if β = 0.
Besides that, the roots α and β are related to c according to c = −2α− 4β = −2α. The latter
can be seen by equating the f2 coefficients in the polynomial F . As a result we derived a
solution (for c > 0) of the KdV equation reading

u(x, t) = −c
2 cosh2

(
1
2
√
c(x− ct+C)

) . (4.3)

This solution was historically very important because its shape corresponds to Russell’s obser-
vation. We remark here that the maximum of u lies at x = ct, leading to an amplitude of 1

2c.
Thus the (maximum) amplitude and the propagation speed are related [16]. Figure 2 shows the
propagation of such a wave.
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Figure 2. Propagation of a solitary wave travelling from the left to the right with c = 1.

More general travelling solutions also exist, for instance when F has three distinct real roots. In
order to solve the KdV equation in that case we can proceed in the same way. After performing
the substitution ξ ..= α+ (β − α) sin2(ν) we then get an integral of the form

v ..=

� φ

0

1√
1− k2 sin2 ν

dν. (4.4)
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By using the Jacobian elliptic (cosine) function cn we can write the solution as cosφ = cn(v; k).
These solutions are referred to as cnoidal waves [16]. Until the sixties these solutions were the
only ones known. However, as the KdV equation also appeared in different fields of physics,
other solutions than travelling waves were needed in order to describe the observed phenomena.
The objective now is to outline the methods needed to solve the KdV equation in more general
cases and then apply them to a special family of potentials, namely the reflectionless potentials.
In short, we (still) wish to solve the equation

ut(x, t)− 6u(x, t)ux(x, t) + uxxx(x, t) = 0 (4.5)

for a given initial condition u0 ..= u(x, t = 0) = f(x) where f(x) decays sufficiently rapidly
as ‖x‖ → ∞. For that Gardner, Greene, Kruskal and Miura proposed the so called Inverse
Scattering Method which is based on a relation between the KdV equation (4.5) and the time-
independent Schrödinger equation. In order to understand this relation we start by discussing
the following proposition:

Proposition 4.1 (Miura). If v is a solution to the modified KdV equation vt− 6v2vx+ vxxx = 0.
Then

u = (v2 + vx) (4.6)

solves the KdV equation.

Proof. This follows from an elementary calculation. We insert u = (v2 + vx) into the KdV
equation: ut−6uux+uxxx = −(2v+∂x)(vt−6v2vx+ vxxx) = 0 and the proposition follows.

We recognise Eq. (4.6) as a Ricatti equation which is linearised by making the ansatz v = ψx
ψ :

ψxx − uψ = 0. Using the Galilean invariance7 of the KdV equation, i.e. that u(x, t) → u(x+
6λt, t) + λ where λ ∈ IR also satisfies the KdV equation, completes the connection since we
obtain

ψxx +
(
λ(t)− u(x, t)

)
ψ = 0 (4.7)

where we allowed the eigenvalue λ = λ(t) to depend on t.

Since the Schrödinger equation (4.7) is familiar from quantum mechanics, it is more convenient
to solve this problem where t is a parameter and u(x, t), the solution we are interested in, the
potential. Following this line of reasoning we proceed in the following way in order to solve the
initial value problem for the KdV equation (4.5):

1. At time t = 0, given u(x, 0) we solve the direct scattering problem and obtain the scattering
data S(λ, t = 0) at time t = 0.

2. By performing the time evolution of the scattering data when the potential evolves ac-
cording to the KdV equation we then obtain the time evolved scattering data S(λ, t).

3. It is now possible to reconstruct the potential u(x, t), which is the sought solution of the
KdV equation, from the scattering data at time t. This is usually referred to as the inverse
scattering transform. This is essentially done by solving the Gelfand-Levitan-Marchenko
(integral) equation which is highly non-trivial.

7This shall be proven in section 5.
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The aforementioned steps are depicted in Fig. 3. We would like to emphasize the similarity
to the familiar Fourier transform which fails to solve non-linear partial differential equations.
In other words, the inverse scattering transform can be seen as a generalisation of the Fourier
transform. Since the Gelfand-Levitan-Marchenko equation, the time evolution of the scattering
data (which we will see shortly) as well as the Schrödinger equation are linear, we (only) have
to solve linear problems in order to obtain a solution of the KdV equation [1], [14], [16]. We will
now provide a detailed discussion of the different steps needed to solve the KdV equation.

Figure 3. Schematic description of the steps involved in the inverse scattering method.

1. Direct Scattering

We will assume that u(x, 0) has a compact support, hence we may analyse the asymp-
totic behaviour of the eigenfunctions which satisfy the Schrödinger equation −∂xxψ +
u(x, 0)ψ = λψ. We consider two different cases: (i) bound states, i.e. discrete (negative)
eigenvalues λ = −κ2

n,n = 1, 2, ...,N which lead to the eigenfunctions

ψn(x, 0) = Nn(0)e−κnx

for sufficiently large x where Nn(0) are the normalisation constants; (ii) a continuum of
(positive) eigenvalues λ = k2 corresponding to the eigenfunctions

ψk(x, 0) ∼
{
T (k, 0)e−ikx as x→ −∞
e−ikx +R(k, 0)eikx as x→∞

where T (k, 0) and R(k, 0) represent the transmission and reflection coefficients.
We assume that the time dependence is reflected (only) in the scattering data. Finally we
obtain the scattering data at time t = 0 [14]:

S(λ, 0) =
(
{κn,Nn(0)}Nn=1,R(k, 0),T (k, 0)

)
.

2. Time Evolution of the Scattering Data

In order to describe the time evolution of the scattering data, we rewrite the KdV equation
4.5 as a non-linear evolution equation ut = N (u) with N a non-linear map on a suitable
function space defined by N (f) ..= 6ffx − fxxx. This allows us to follow a more general
procedure which was proposed by Lax in 1967 [1]:

12



Theorem 4.1 (Lax). Let M and L be self-adjoint operators, [L,M ] ..= LM −ML denote
their commutator and λ ∈ R. If the evolution equation ut −N (u) = 0 can be expressed
as the Lax equation

Lt + LM −ML = Lt + [L,M ] = 0 (4.8)

and if
Lψ = λψ

then λt = 0 and ψ evolves according to

ψt =Mψ for t > 0. (4.9)

Proof. We differentiate Lψ = λψ w.r.t t: Ltψ + Lψt = λtψ + λψt. By using the Lax
equation Lt + [L,M ] = 0 we can reformulate the latter equation:

λtψ = (L− λ)ψt + (ML−LM)ψ = (L− λ)ψt +Mλψ−LMψ = (L− λ)(ψt −Mψ).
(4.10)

Taking the inner product with 〈ψ| we obtain

〈ψ|ψ〉λt = 〈ψ|(L− λ)(ψt −Mψ)〉 = 〈(L− λ)ψ|ψt −Mψ〉 = 0

since L is self-adjoint. Hence, we get that (wlog ψ 6= 0) λt = 0, i.e. each eigenvalue of the
self-adjoint operator L is constant.
We can rewrite Eq. (4.10) yielding L(ψt −Mψ) = λ(ψt −Mψ), therefore we see that
(ψt−Mψ) is an eigenfunction of the operator L and we deduce that ψt−Mψ ∝ ψ. Since
we are allowed to add a scalar function (multiplied by the identity) toM without violating
Lax’s equation, we conclude that the time evolution of a state is given by

ψt =Mψ for t > 0.

As soon as we have found a Lax pair L and M which satisfy the Lax equation (4.8), Lax’s
theorem specifies the time evolution of the states, respectively of the scattering data.
Unfortunately, there exists no systematic method to find these associated operators for a
given non-linear partial differential equation. However, in the case of the KdV equation
the reader may verify that the operators L ..= − d2

dx2 + u(x, t) (Schrödinger operator) and
M ..= −4 d3

dx3 + 6u(x, t) ddx + 3ux(x, t) do form a Lax pair [16].
Outside the support of u(x, t) M reduces to M = −4 d3

dx3 and the evolution of ψn(x, t) is
defined by Eq. (4.9)

d

dt
ψn(x, t) =Mψn(x, t) = −4 d3

dx3Nn(t)e
−κnx = 4κ3

nNn(t)e
−κnx.

On the other hand, d
dtψn(x, t) = d

dtNn(t)e−κnx = e−κnxṄn(t) must hold according to
our assumption for sufficiently large x. By equating both terms for ψ̇n we get dNn

dt (t) =

4κ3
nNn(t), hence Nn(t) = Nn(0)e4κ3

nt which can be reformulated as a (probability) density
with Nn(0) =

√
ρn(0) leading to ρn(t) = ρn(0)e8κ3

nt [16].

For the time evolution of the reflection and transmission coefficients, we apply a similar
procedure using Lax’s theorem. We naively assume that the eigenfunction may be written
as Ψk(x, t) = A(t)e−ikx + E(t)eikx with A(0) = 1, E(0) = R(k, 0) for x large enough.
Using again M = −4 d3

dx3 we obtain

Ψ̇k(x, t) =MΨk(x, t) = −4(−ik)3A(t)e−ikx − 4(ik)3E(t)eikx = Ȧ(t)e−ikx + Ė(t)eikx.
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This yields Ȧ = −4ik3A(t) and Ė(t) = 4iκ3E(t) since e±ikx are linearly independent.
Therefore we obtain the solutions A(t) = e−4ik3t and E(t) = R(k, 0)e4ik3t. Turning to
the case where x is largely negative we assume the eigenfunctions Ψk(x, t) = C(t)eikx +
D(t)e−ikx with C(0) = 0, D(0) = T (k, 0). Applying the time evolution operator M we
obtain:

Ψ̇k(x, t) =MΨk(x, t) = −4(ik)3C(t)eikx − 4(−ik)3D(t)e−ikx = Ċ(t)eikx + Ḋ(t)e−ikx.

This yields Ċ = 4ik3C(t) and Ḋ(t) = −4iκ3D(t) since e±ikx are linearly independent,
therefore we obtain the solutions C(t) ≡ 0 and D(t) = T (k, 0)e−4ik3t. While these calcula-
tions hold in the limit x→ ±∞ we cannot simply assume that they are still valid when x is
not large enough. For x considerably smaller than∞ the solution is given by the so-called
Jost solutions which are denoted by f±±k(x, t). Jost demonstrated their uniqueness [16].
Hence, we write:

Ψk(x, t) = A(t)f+−k(x, t) +E(t)f+k (x, t) = C(t)f−−k(x, t) +D(t)f−k

with A(t), E(t), C(t), D(t) as derived above. It turns out that in the limit x sufficiently
large respectively negative the previous calculations do hold. In fact, the time dependent
Jost solutions (with the transmission and reflection coefficients) are generally denoted by

ψk(x, t) = T (k, t)f−k (x, t) = f+−k(x, t) +R(k, t)f+k (x, t).

Hence, comparing the expressions for Ψk(x, t) and ψk(x, t) we get e4ik3tΨk(x, t) = ψk(x, t)
from which follows that T (k, t) ≡ T (k, 0), i.e. the transmission coefficient is time inde-
pendent, and R(k, t) = R(k, 0)e8ik3t [16]. Finally we have obtained the scattering data at
time t

S(λ, t) =
(
{κn,Nn(t)}Nn=1,R(k, t),T (k, t)

)
.

3. Inverse Scattering Transform

We recover the potential u(x, t) by performing the inverse scattering transform. Giving a
(mathematical) introduction to this technique is beyond the scope of this report. Hence,
we simply postulate the equations required for that. Then we will solve such equations for
the special case of a reflectionless potential.
Firstly, using the evolved scattering data we define the function [16]

K(ξ, t) ..= 2
N∑
n=1

ρn(t)e
−2κmξ +

1
π

� ∞
−∞

R(k, t)e2ikξ dk. (4.11)

Secondly, we solve the (linear) integral equation,

K(x+ y; t) +B(x, y; t) +
� ∞

0
B(x, z; t)K(x+ y+ z; t) dz = 0 (4.12)

which is called the Gel’fand-Levitan-Marchenko equation. From Eq. (4.12) we obtain the
function B(x, y; t) and the solution u(x, t) is then obtained by differentiation through the
formula:

u(x, t) = − d

dx
B(x, 0; t). (4.13)
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4.1 Reflectionless Potential

We consider a reflectionless potential, i.e. R(k, t) ≡ 0, and in such a case K(ξ, t) reduces to
K(ξ, t) = 2

∑N
n=1 ρn(t)e

−2κmξ with a finite amount of (discrete) eigenvalues κn respectively
bound states and ρn(t) = ρn(0)e8κ3

nt > 0. We want to solve the Gel’fand-Levitan-Marchenko
equation in order to obtain B(x, y)

2
N∑
n=1

ρn(t)e
−2κm(x+y) +B(x, y; t) + 2

� ∞
0

B(x, z; t)
N∑
n=1

ρn(t)e
−2κm(x+y+z) dz = 0. (4.14)

For that we use the ansatz

B(x, y; t) =
N∑
n=1

√
ρn(t)e

−κn(x+2y)wn(x)

with wn(x) to be determined from the Gel’fand-Levitan-Marchenko equation. We will drop
writing the explicit time dependence in future steps. By inserting this expression for B(x, y)
into Eq. (4.14), we get

N∑
n=1

e−2κny
{

2ρne−2κnx +
√
ρne
−κnxwn(x) + 2

N∑
m=1

ρn
√
ρmwm(x)e−(2κn+κm)x

� ∞
0

e−2(κn+κm)z dz
}
= 0.

Since we have assumed that each eigenvalue κi is distinct, the exponentials are linearly indepen-
dent and never vanish, hence the latter equation is satisfied if the coefficients vanish for every
e−2κny. We further divide by √ρne−κnx and get after performing the integration

2√ρne−κnx +wn(x) + 2
N∑
m=1

√
ρnρm

κn + κm
e−2(κn+κm)xwm(x) = 0 ∀n. (4.15)

In order to simplify this system of N algebraic equations we definew(x) = (w1(x), · · · ,wN (x))T ,
v(x) = 2(v1(x), · · · , vN (x))T with vi ..=

√
ρie
−κix, and the symmetric N ×N matrix Sij =

√
ρiρje

−(κi+κj)x/(κi+ κj) for i, j = 1, 2, · · ·N , besides, let 1 denote the identity N ×N -matrix.
To make sure that the solution is unique, we need to verify that S is positive definite. Consider
the quadratic form

〈ξ|Sξ〉 =
N∑

i,j=1

√
ρi
√
ρjξiξi

κi + κj
e−(κi+κj)x =

� ∞
x

[ N∑
i=1

√
ρiξie

−κix
]2

dy ≥ 0

where ξ = (ξ1, · · · , ξN ). Hence, S is clearly positive definite since the upper term is obviously
positive and vanishes only if ξ = 0. Using the previous definitions we can rewrite Eq. (4.15)
as
(

1 + S(x)
)
w(x) + v(x) = 0 ⇔ w(x) = −

(
1 + S(x)

)−1
v(x) since 1 + S(x) is invertible.

Therefore we get

B(x, y) =
N∑
n=1

√
ρn(t)e

−κn(x+ 2y)wn(x) = −
〈(

1 + S(x)
)−1

v(x)

∣∣∣∣12v(x+ 2y)
〉

.

According to Eq. (4.13) we then set y = 0:

B(x, 0) = −1
2

〈(
1 + S(x)

)−1
v(x)

∣∣∣∣v(x)〉 = −1
2

N∑
n,m=1

(
1 + S(x)

)−1

n,m
vm(x)vn(x)

= 2
N∑

n,m=1

(
1 + S(x)

)−1

n,m

d

dx

(
1 + S(x)

)
m,n

= 2 tr
[(

1 + S(x)
)−1 d

dx

(
1 + S(x)

)]
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where we used d
dx

(
1+S(x)

)
n,m

= −√ρnρme−(κn+κm)x = −1
4vn(x)vm(x). By using the identity

d
dx

(
log det(A(x))

)
= tr

(
A−1(x) ddxA(x)

)
(4.16)

which we shortly prove in Appendix A, we finally obtain B(x, 0) = 2 d
dx

(
log det(1 + S)

)
. From

the latter expression we deduce the solution by differentiation according to Eq. (4.13):

u(x, t) = −2 d2

dx2

(
log det(1 + S(x))

)
. (4.17)

If R(k, t) 6= 0, then the Gel’fand-Levitan-Marchenko is not analytically solvable anymore [16].
We would like to emphasize that there exists a one to one correspondence between the number
of discrete eigenvalues and the number of solitons which emerge (asymptotically) [14].

Example for N=1

Here we intend to demonstrate how the previously outlined approach can be used to (also)
obtain the solitary wave as depicted in Fig. 2. In addition to that, we show the relationship
between the number of discrete eigenvalues and the number of solitons. We start by solving
the direct scattering problem with the potential u(x, t = 0) = −2 cosh−2(x). The first task
is to find the scattering data by solving the (time-independent) Schrödinger equation ψxx +(
λ+ 2 cosh−2(x)

)
= 0. This latter equation transforms conveniently under the substitution

ζ ..= tanh(x) leading to
d

dζ

[(
1− ζ2

)dψ
dζ

]
+

[
2 + λ

1− ζ2

]
ψ = 0 (4.18)

which is immediately recognized as the general Legendre equation with l = 1 and −m2 ..= λ,
better m = κm. We recall that m may take the values 0 or 1, where we will obtain bounded
states only if m = 1, respectively κ = κ1 = 1. The corresponding eigenfunction is the associated
Legendre polynomial ψ1 ∝ P 1

1 (tanh x) = − cosh−1(x). Since
�∞
−∞ cosh−2(x)dx = 2, the nor-

malised eigenfunction becomes ψ1(x) = − 1√
2 cosh−1(x). Analysing the asymptotic behaviour of

this solution as x → ∞ we obtain ψ1(x) ∼
√

2e−x, therefore a scattering data of N1(0) =
√

2.
The time evolved scattering data is then N1(t) =

√
2e4t, and consequently ρ1(t) = 2e8t accord-

ing to the previous results. By inserting the matrix element S11 = e8t−2x in Eq. (4.17), we
finally get the solution

u(x, t) = −2 d2

dx2

(
log
(
1 + e8t−2x

))
= −2 cosh−2(x− 4t) (4.19)

which is precisely the solitary wave obtained in Eq. (4.3) if we set c = 4 [1]. More generally, by
imposing the initial condition u(x, 0) = −N(N + 1) cosh−2(x) and repeating the previous steps
we would obtain the N soliton solution. Figure 4 illustrates the (normalised) 2-soliton solution
given by

u(x, t) = 12
8 ·

3 + 4 cosh(2x− 8t) + cosh(4x− 64t)[
3 cosh(x− 28t) + cosh(3x− 36t)

]2 . (4.20)

Such solution could hardly be obtained through a simple ansatz such as the one used at the very
beginning of section 4. In Fig. 4 we can see two solitons retain their identities after interacting
as described by solution (4.20) [16].
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Figure 4. Propagation of two solitons according to the solution (4.20).
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5 Symmetries of the KdV Equation

A symmetry group of the KdV equation (or any other differential equation) is a group G such
that for every g ∈ G and every solution u of our equation, g(u) is also a solution. The objective
of this section is to find such symmetry group [17]. Even though few "ad-hoc" methods exist
(which are rather based on guessing an appropriate ansatz) to find some transformations leav-
ing the KdV equation invariant, we will focus on the more general approach using infinitesimal
transformations leading to a symmetry group. The great power of these infinitesimal transfor-
mations is due to the fact that we can substitute the difficult non-linear conditions for invariance
(of a subset or function) under the group transformation with equivalent linear conditions for
infinitesimal invariance under the corresponding infinitesimal generators of the group action [18].

In order to find the most general (connected) symmetry group, let

v =
p∑
i=1

ξi(x,u) ∂

∂xi
+

q∑
α=1

φα(x,u) ∂

∂uα
(5.1)

be a vector field defined on an appropriate space. The numbers p and q denote the amount
of dependent and independent variables respectively. We shall interpret such vector field with
unknown coefficients ξi(x,u) and φα(x,u) as infinitesimal generator of the (Lie-) symmetry
group. In other words, the flux generated by this vector field is identified as the symmetry
group. In order to determine the coefficients of the vector field v it is necessary to introduce
the concept of prolongation of a space. Roughly speaking, the k-th prolongation is the space
obtained by adding the k-th mixed derivative. The n-th prolongation of v is then the vector
field

pr(n)v = v +
q∑

α=1

∑
J

φJα(x,u(n)) ∂

∂uαJ
(5.2)

with the second summation being over all multi-indices J = (j1, · · · , jk), with 1 ≤ jk ≤ p,
1 ≤ k ≤ n. Using the chain rule for derivatives one can show that the coefficients φJα of pr(n)v
are given by the following formula:

φJα(x,u(n)) = DJ

(
φα −

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ ,i (5.3)

where DJ is the total derivative, uαi ..= ∂uα

∂xi
and uαJ ,i

..=
∂uαJ,i
∂xi

. The infinitesimal criterion of
invariance is given by the theorem [18]:
Theorem 5.1. Suppose

∆ν(x,u(n)) = 0, ν = 1, · · · , l
is a system of differential equations of maximal rank. If G is a local group of transformation
acting on M , and

pr(n)v
[
∆ν(x,u(n))

]
= 0 ν = 1, · · · , l, whenever ∆(x,u(n)) = 0, (5.4)

for every infinitesimal generator v of G, then G is a symmetry group of the system.

Proof. See [18], pages 106-107

We will now apply theorem 5.1 in order to find the symmetry group to the KdV equation. For
simplicity, we set the constants which appear in the KdV equation to 1 consider the equation8

ut + uux + uxxx = 0 (5.5)
8Eq. 5.5 is obtained through the rescaling u 7→ 1

6u.
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which has two independent variables (x, t) and one dependent variable u(x, t). Therefore p = 2
and q = 1. The KdV is a third order (non-linear) partial differential equation and in that
case n = 3, hence ∆(x, t,u(3)) = ut + uxxx + uux. We define a vector field according to Eq.
(5.1) v ..= ξ(x, t,u)∂x + τ (x, t,u)∂t + φ(x, t,u)∂u. The objective is to determine the coefficients
ξ, τ and φ so that the vectorfield v generates a (one-parameter) symmetry group of the KdV
equation (5.5). According to theorem 5.1 we need to know the third prolongation of v. By using
Eq. (5.2) and after writing the sums down we get:

pr(3)v = v + φx
∂

∂ux
+ φt

∂

∂ut

+ φxx
∂

∂uxx
+ φxt

∂

∂uxt
+ φtt

∂

∂utt

+ φxxx
∂

∂uxxx
+ φxxt

∂

∂uxxt
+ φxtt

∂

∂uxtt
+ φttt

∂

∂uttt
.

The coefficients φi are computed using Eq. (5.3), where we would like to emphasize that these
are cumbersome calculations9. We now apply the third prolongation pr(3) to the KdV equation
(5.5), in other words theorem 5.1 infers that the vectorfield v = ξ∂x + τ∂t + φ∂u generates a
(one-parameter) symmetry group if and only if

φt + φxxx + uφx + uxφ = 0 (5.6)

where u satisfies Eq. (5.5). By inserting the coefficients φi, replacing ut = −uxxx− uux (in this
way also higher derivatives with respect to time and position are obtained, i.e. uxt,uxxt, etc.)
wherever it occurs and isolating each (derivative) monomial, we obtain the defining equations
for the symmetry group. Since this is a very long (and tedious) calculation we will not present
it here in full detail. As a result, it turns out that the coefficients are given by

ξ = c1 + c3t+ c4x, τ = c2 + 3c4t, φ = c3 − 2c4u

where ci are arbitrary (integration) constants. Finally, we collect the linear independent terms
of the vectorfield leading to the symmetry (Lie)-algebra g of the Korteweg-de Vries equation
which is spanned by the four vector (fields):

v1 = ∂x, v2 = ∂t,
v3 = t∂x + ∂u, v4 = x∂x + 3t∂t − 2u∂u.

It can be shown by elementary calculations that the Lie-bracket closes, i.e. [vi, vj ] = ckijvk for
ckij given in Table 1. By exponentiating each generator separately one gets the induced flow, i.e.
the symmetry transformation induced by the respective generator: x̃ = eαvix, t̃ = eαvit and
ũ(x̃, t̃) = eαviu(x, t) for α ∈ R. See 10 for an explicit calculation. In conclusion, if u = f(x, t)

9As an example we have

φx = Dx(φ− ξux − τut) + ξuxx + τuxt = φx + (φu − ξu)ux − τxut − ξuu2
x − τuuxut

and even more complicated

φxxx = D3
x(φ− ξux − τut) + ξuxxxx + τuxxxt

= D3
xφ− uxD3

xξ − uyD3
xτ − 3uxxD2

xξ − 3uxtD2
xτ − 3uxxxDxξ − 3uxxtDxτ

which becomes a long calculation.
10

x̃ = eαv3x → [1 + α(∂u + t∂x) + ...]x = x+ αt

t̃ = eαv3t → [1 + α(∂u + t∂x) + ...]t = t

ũ = eαv3u → [1 + α(∂u + t∂x) + ...]u = u+ α

Hence, ũ(x̃, t̃) = ũ(x+ αt, t) = u(x, t) + α ⇔ ũ(x, t) = u(x− αt, t) + α
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is a solution of the KdV equation, so are

u(1) = f(x− α, t) space translation (5.7)
u(2) = f(x, t− α) time translation (5.8)
u(3) = f(x− αt, t) + α Galilean boost (5.9)
u(4) = e−2αf(e−αx, e−3αt) scaling (5.10)

Moreover, one can notice that the ansatz u(x, t) = f(x− ct) we made in order to solve the
KdV equation, emerged naturally by studying its symmetries. However, the list of symmetries
obtained in this way may seem disappointingly small since we previously showed that the KdV
equation has an infinite number of conservation laws. The question now is how we would need to
modify our approach in order to obtain all possible symmetries. It turns out that it is necessary
to generalize the (generating) vector field by allowing its coefficients ξ and φ to depend also on
derivatives of u. Besides that the methodology remains essentially the same [17], [18].

v1 v2 v3 v4

v1 0 0 0 v1
v2 0 0 v1 3v2
v3 0 −v1 0 −2v3
v4 −v1 −3v2 2v3 0

Table 1. Represents the Lie bracket [vi, vj ] where vi is the i-th column vector and vj is the j-th row vector [18].
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6 Concluding Remarks
In this report we have discussed a non-linear partial differential equation known as the Korteweg-
de Vries equation which describes, for instance, the propagation of waves in shallow water. The
first remarkable aspect of the KdV equation is that its solutions were found to be in consonance
with the experimental observations of solitary waves by J.S. Russell in 1834.

In section 3 we analysed some elegant properties of the KdV equation where we showed that it
arises from a 1+1 dimensional field theory. The latter directly leads to the notion of conserved
(Noether) current(s). Furthermore, we also showed that a system described by the KdV equation
has an infinite amount of conserved quantities.

In section 4 we first demonstrated how Korteweg and de Vries solved their equation before
presenting the inverse scattering transform which was introduced by Gardner, Greene, Kruskal
and Miura in order to solve special types of non-linear partial differential equations, especially
the KdV equation. We verified that a reflectionless potential leads (in the simplest case) to the
same solution already obtained by Korteweg and de Vries in 1895 using travelling wave ansatz.
We then went a step further by generalising our approach and obtained the two-soliton solution
also using the Inverse Scattering Method. Such solution contains some of the main properties
characterising solitonic behaviour as, for instance, the stability of the (soliton-)solutions arising
from an intrinsic equilibrium between non-linearity and dispersion within the KdV equation and
not (directly) from topological reasons.

Lastly, in section 5, we applied Lie theory in order to obtain the symmetry group of the KdV
equation. The latter turned out to include, for instance, the geometrical transformations which
generated a conserved (Noether) current in section 3. Besides that, we have also shown how the
travelling wave ansatz emerge naturally.
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A Proof of the Identity (4.16)
The identity

d
dx

(
log det(A(x))

)
= tr

(
A−1(x) ddxA(x)

)
holds for A being an N ×N matrix.

Proof. Let P be a N ×N matrix with (only) positive eigenvalues αi such that log(detP ) =∑N
i=1 log(αi) is well defined. We first show that log(detP ) = tr logP . We diagonalize P =

TDT−1 where D is a diagonal matrix with components αi; thus, tr logP = tr log
(
TDT−1) =

tr
(
T log(D)T−1

)
=
∑N
i=1 log(αi) since the trace is cyclic. We now return to d

dx log(detP ) =

d
dxtr logP = tr

(
P−1 dP

dx

)
since the trace is linear.
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